1.Autophagy inhibitor 3-methyladenine enhances the sensitivity of nasopharyngeal carcinoma cells to chemotherapy and radiotherapy.
Lele SONG ; Linyan MA ; Gende CHEN ; Yingying HUANG ; Xiaojin SUN ; Chenchen JIANG ; Hao LIU
Journal of Central South University(Medical Sciences) 2016;41(1):9-18
		                        		
		                        			OBJECTIVE:
		                        			To explore the effects of 3-methyladenine (3-MA, an autophagy inhibitor) on sensitivities of nasopharyngeal carcinoma cells to radiotherapy and chemotherapy and the underlying mechanisms.
		                        		
		                        			METHODS:
		                        			Cell proliferation was examined by MTT and colony formation assay, while cell apoptosis was evaluated by annexin V/PI double staining and 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride (DAPI) staining. Mitochondrial membrane potential was measured by commercial kit (JC-1). The expression of endoplasmic reticulum stress (ERS)-related protein, glucose-regulated protein 78 (GRP78) and autophagy-related protein beclin1, microtubule-associated protein 1 light chain 3 (LC3) were examined by Western blot.
		                        		
		                        			RESULTS:
		                        			Cisplatin (DDP), ionizing radiation (IR) or tunicamycin (TM) treatment obviously inhibited the proliferation of HONE-1 cells in a concentration-dependent and time-dependent manner. Compared with control group, pretreatment with 1 mmol/L of 3-MA significantly 
reduced cell viability and enhanced the apoptosis in the DDP (6.00 μmol/L), 4.00 Gy IR or TM (1.00 μmol/L) groups. There was no significant difference in the apoptosis between the DDP (5.8%) and 4Gy IR (6.7%) groups. Compared with the control group, protein levels of GRP78, beclin1 and lipid-conjugated membrane-bound form (LC3-II) were significantly increased after the treatment of DDP, 4.00 Gy IR or TM, which were inhibited by pretreatment of 3-MA.
		                        		
		                        			CONCLUSION
		                        			3-MA can sensitize HONE-1 cells to chemotherapy and radiotherapy, which is related to prevention of endoplasmic reticulum stress-induced autophagy in nasopharyngeal carcinoma cells.
		                        		
		                        		
		                        		
		                        			Adenine
		                        			;
		                        		
		                        			analogs & derivatives
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Apoptosis Regulatory Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Autophagy
		                        			;
		                        		
		                        			Beclin-1
		                        			;
		                        		
		                        			Carcinoma
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			radiation effects
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			Cisplatin
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Endoplasmic Reticulum Stress
		                        			;
		                        		
		                        			Heat-Shock Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Membrane Potential, Mitochondrial
		                        			;
		                        		
		                        			Membrane Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Microtubule-Associated Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Nasopharyngeal Carcinoma
		                        			;
		                        		
		                        			Nasopharyngeal Neoplasms
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Radiation, Ionizing
		                        			;
		                        		
		                        			Radiation-Sensitizing Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Tunicamycin
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail