1.ADT-OH improves intestinal barrier function and remodels the gut microbiota in DSS-induced colitis.
Zhiqian BI ; Jia CHEN ; Xiaoyao CHANG ; Dangran LI ; Yingying YAO ; Fangfang CAI ; Huangru XU ; Jian CHENG ; Zichun HUA ; Hongqin ZHUANG
Frontiers of Medicine 2023;17(5):972-992
Owing to the increasing incidence and prevalence of inflammatory bowel disease (IBD) worldwide, effective and safe treatments for IBD are urgently needed. Hydrogen sulfide (H2S) is an endogenous gasotransmitter and plays an important role in inflammation. To date, H2S-releasing agents are viewed as potential anti-inflammatory drugs. The slow-releasing H2S donor 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), known as a potent therapeutic with chemopreventive and cytoprotective properties, has received attention recently. Here, we reported its anti-inflammatory effects on dextran sodium sulfate (DSS)-induced acute (7 days) and chronic (30 days) colitis. We found that ADT-OH effectively reduced the DSS-colitis clinical score and reversed the inflammation-induced shortening of colon length. Moreover, ADT-OH reduced intestinal inflammation by suppressing the nuclear factor kappa-B pathway. In vivo and in vitro results showed that ADT-OH decreased intestinal permeability by increasing the expression of zonula occludens-1 and occludin and blocking increases in myosin II regulatory light chain phosphorylation and epithelial myosin light chain kinase protein expression levels. In addition, ADT-OH restored intestinal microbiota dysbiosis characterized by the significantly increased abundance of Muribaculaceae and Alistipes and markedly decreased abundance of Helicobacter, Mucispirillum, Parasutterella, and Desulfovibrio. Transplanting ADT-OH-modulated microbiota can alleviate DSS-induced colitis and negatively regulate the expression of local and systemic proinflammatory cytokines. Collectively, ADT-OH is safe without any short-term (5 days) or long-term (30 days) toxicological adverse effects and can be used as an alternative therapeutic agent for IBD treatment.
Humans
;
Mice
;
Animals
;
Gastrointestinal Microbiome
;
Intestinal Barrier Function
;
Mice, Inbred C57BL
;
Colitis/metabolism*
;
Inflammatory Bowel Diseases/drug therapy*
;
Inflammation
;
Anti-Inflammatory Agents/pharmacology*
;
Disease Models, Animal
2.Research progress on intestinal microecology regulating mechanism and biological activities of polysaccharides.
Ting TANG ; Hua-Guo CHEN ; Chao ZHAO ; Xiao-Jian GONG ; Qing-Fang DENG ; Xin ZHOU
China Journal of Chinese Materia Medica 2021;46(21):5585-5592
Intestinal microecology is an important defense system in the human body. The intestinal flora is the core micro-ecosystem in the human intestine. It has a symbiotic relationship with the overall functions of the body. It has strong metabolic activity to maintain the normal functioning of the body and resist the invasion of various viral antigens in the body. Playing a protective function,the imbalanced intestinal microecology can cause various diseases. Polysaccharides can be extracted from a wide range of sources and have low toxicity and side effects. They have attracted wide attention because of their anti-tumor, anti-oxidant, anti-inflammatory and other biological activities. Studies have demonstrated that polysaccharides can regulate intestinal microecological disorders. According to the studies in recent years, this review summarizes that polysaccharides mainly modulate intestinal microecological disorders through regulating the composition of intestinal flora, improving the metabolism of the flora, and repairing the intestinal tract barrier. On the basis of these mechanisms of action, this paper elaborates the anti-tumor, immunomodulatory, and anti-inflammatory activities of polysaccharides. This paper can provide reference for the future research on the intestinal microecology-regulating mechanism and biological activities of polysaccharides.
Anti-Inflammatory Agents
;
Ecosystem
;
Gastrointestinal Microbiome
;
Humans
;
Intestines
;
Polysaccharides/pharmacology*
3.Perinatal antibiotics exposure causes increase in serum 5-hydroxytryptamine level as well as changes in behavior and gastrointestinal motility in the male offspring in mice.
Yu-Yao ZOU ; Xiao-Yu WU ; Lan SHU ; Pei-Lin JI ; Hua-Shan GONG ; Wei-Fang RONG
Acta Physiologica Sinica 2020;72(3):285-298
The current study was aimed to investigate the potential effects of perinatal exposure to therapeutic dose of penicillin and cefixime on the cognitive behaviors, gastrointestinal (GI) motility and serum 5-hydroxytryptamine (5-HT) level in the offspring. Pregnant rats were continuously treated with cefixime or penicillin in the period between 1 week before and 1 week after labor. Behavior tests, including social preference, self-grooming and elevated plus maze tests, and intestinal motility tests were carried out on the offspring at age of 4 to 10 weeks. Serum 5-HT levels were detected with ELISA, and potassium/sodium hyperpolarization activated cyclic nucleotide-gated channel 2 (HCN2) and tryptophan hydroxylase 1 (TPH1) expression levels in colon epithelium of offspring were detected by Western blot and RT-qPCR. The results showed that, compared with the naive group, cefixime increased social behavior in the female offspring, but did not affect the male offspring. Compared with the naive group, cefixime significantly decreased colonic and intestinal transits, and increased cecum net weight and standardized cecum net weight in the male offspring, but did not affect the female offspring. The serum 5-HT levels in the male offspring, rather than the female offspring, in cefixime and penicillin groups were significantly increased compared with that in the naive group. The protein expression level of HCN2 in colon epithelium of the offspring in cefixime group was significantly down-regulated, and the TPH1 expression level was not significantly changed, compared with that in the naive group. These results suggest that perinatal antibiotics exposure may affect neural development and GI functions of the offspring, and the mechanism may involve peripheral 5-HT and gender-dependent factor.
Animals
;
Anti-Bacterial Agents
;
pharmacology
;
Colon
;
Female
;
Gastrointestinal Motility
;
Male
;
Mice
;
Pregnancy
;
Rats
;
Serotonin
;
Tryptophan Hydroxylase
4.Rewiring ERBB3 and ERK signaling confers resistance to FGFR1 inhibition in gastrointestinal cancer harbored an ERBB3-E928G mutation.
Xiang YANG ; Hongxiao WANG ; Enjun XIE ; Biyao TANG ; Qingdian MU ; Zijun SONG ; Junyi CHEN ; Fudi WANG ; Junxia MIN
Protein & Cell 2020;11(12):915-920
Amino Acid Substitution
;
Antineoplastic Agents/pharmacology*
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm/genetics*
;
Gastrointestinal Neoplasms/pathology*
;
Humans
;
MAP Kinase Signaling System/genetics*
;
Mutation, Missense
;
Receptor, ErbB-3/metabolism*
;
Receptor, Fibroblast Growth Factor, Type 1/metabolism*
5.Antibiotic Treatment Drives the Diversification of the Human Gut Resistome.
Jun LI ; Elizabeth A RETTEDAL ; Eric VAN DER HELM ; Mostafa ELLABAAN ; Gianni PANAGIOTOU ; Morten O A SOMMER
Genomics, Proteomics & Bioinformatics 2019;17(1):39-51
Despite the documented antibiotic-induced disruption of the gut microbiota, the impact of antibiotic intake on strain-level dynamics, evolution of resistance genes, and factors influencing resistance dissemination potential remains poorly understood. To address this gap we analyzed public metagenomic datasets from 24 antibiotic treated subjects and controls, combined with an in-depth prospective functional study with two subjects investigating the bacterial community dynamics based on cultivation-dependent and independent methods. We observed that short-term antibiotic treatment shifted and diversified the resistome composition, increased the average copy number of antibiotic resistance genes, and altered the dominant strain genotypes in an individual-specific manner. More than 30% of the resistance genes underwent strong differentiation at the single nucleotide level during antibiotic treatment. We found that the increased potential for horizontal gene transfer, due to antibiotic administration, was ∼3-fold stronger in the differentiated resistance genes than the non-differentiated ones. This study highlights how antibiotic treatment has individualized impacts on the resistome and strain level composition, and drives the adaptive evolution of the gut microbiota.
Adult
;
Anti-Bacterial Agents
;
pharmacology
;
Bacteria
;
genetics
;
isolation & purification
;
Drug Resistance, Bacterial
;
genetics
;
Female
;
Gastrointestinal Microbiome
;
drug effects
;
Humans
;
Metagenomics
;
Prospective Studies
6.Stereotypes About Enterotype: the Old and New Ideas.
Genomics, Proteomics & Bioinformatics 2019;17(1):4-12
In 2011, the term "enterotype" first appeared to the general public in Nature, which refers to stratification of human gut microbiota. However, with more studies on enterotypes conducted nowadays, doubts about the existence and robustness of enterotypes have also emerged. Here we reviewed current opinions about enterotypes from both conceptual and analytical points of view. We firstly illustrated the definition of the enterotype and various factors influencing enterotypes, such as diet, administration of antibiotics, and age. Then we summarized lines of evidence that pose the concept against the enterotype, and described the current methods for enterotype analysis. Finally, we showed that the concept of enterotype has been extended to other ecological niches. Based on current studies on enterotypes, it has been clear that more studies with larger sample sizes are needed to characterize the enterotypes. Improved computational methods are also required to build sophisticated models, reflecting the dynamics and resilience of enterotypes.
Adult
;
Age Factors
;
Aged
;
Anti-Bacterial Agents
;
pharmacology
;
Child
;
Diet
;
Gastrointestinal Microbiome
;
drug effects
;
Humans
;
Infant
7.Quantification of Panax notoginseng saponins metabolites in rat plasma with in vivo gut microbiota-mediated biotransformation by HPLC-MS/MS.
Yin-Ping GUO ; Man-Yun CHEN ; Li SHAO ; Wei ZHANG ; Tai RAO ; Hong-Hao ZHOU ; Wei-Hua HUANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(3):231-240
Panax notoginseng saponins (PNS) are the major components of Panax notoginseng, with multiple pharmacological activities but poor oral bioavailability. PNS could be metabolized by gut microbiota in vitro, while the exact role of gut microbiota of PNS metabolism in vivo remains poorly understood. In this study, pseudo germ-free rat models were constructed by using broad-spectrum antibiotics to validate the gut microbiota-mediated transformation of PNS in vivo. Moreover, a high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was developed for quantitative analysis of four metabolites of PNS, including ginsenoside F1 (GF1), ginsenoside Rh2 (GRh2), ginsenoside compound K (GCK) and protopanaxatriol (PPT). The results showed that the four metabolites could be detected in the control rat plasma, while they could not be determined in pseudo germ-free rat plasma. The results implied that PNS could not be biotransformed effectively when gut microbiota was disrupted. In conclusion, gut microbiota plays an important role in biotransformation of PNS into metabolites in vivo.
Animals
;
Anti-Bacterial Agents
;
pharmacology
;
Biotransformation
;
Chromatography, High Pressure Liquid
;
Feces
;
microbiology
;
Gastrointestinal Microbiome
;
drug effects
;
physiology
;
Ginsenosides
;
blood
;
Male
;
Panax notoginseng
;
chemistry
;
Rats, Sprague-Dawley
;
Sapogenins
;
blood
;
Saponins
;
administration & dosage
;
metabolism
;
Tandem Mass Spectrometry
8.Effects of Shengmai Jianghuang San on intestinal flora in nude mice with radio resistant cells of nasopharyngeal carcinoma.
Jia-Bin YANG ; Dao-Qi ZHU ; Meng SHAO ; Ai-Wu LI ; Zhao-Ru LIU ; Rui-Jiao GAO ; Shi-Ya LIU ; Dan-Dan LOU ; Ying LYU ; Qin FAN
China Journal of Chinese Materia Medica 2019;44(3):553-558
Modern pharmacological studies have shown that Shengmai San has the effects of enhancing immunity and improving blood circulation, and Curcumae Longae Rhizoma(Jianghuang) has anti-inflammatory, anti-cancer, anti-oxidation and other functions. Shengmai San combined with Jianghuang is a new research direction in the study of anti-tumor of traditional Chinese medicines. The main treatment for nasopharyngeal carcinoma is radiation therapy, but radiation therapy can cause a variety of side effects, and it also changes the composition of the intestinal flora. In this study, the 16 s rDNA sequencing platform was used to perform macro-sequence sequencing of the intestinal flora samples of nude mice bearing the veins of Shengmai Jianghuang San, and then the results of intestinal flora data were analyzed to investigate the effect of Shengmai Jianghuang San on tumors. The results showed that Shengmai Jianghuang San combined with irradiation could enhance the therapeutic effect of tumor treatment. Radiation therapy would reduce the total number and diversity of intestinal flora in nude mice, and also change the structure of the flora. Shengmai Jianghuang San could protect the diversity of colonies, and also partially restore the colony imbalance caused by irradiation. This study provides a research idea for Shengmai Jianghuang San as a sensitizing adjuvant for radiotherapy of nasopharyngeal carcinoma.
Animals
;
Drugs, Chinese Herbal
;
pharmacology
;
Gastrointestinal Microbiome
;
drug effects
;
Mice
;
Mice, Nude
;
Nasopharyngeal Carcinoma
;
radiotherapy
;
Radiation Tolerance
;
Radiation-Sensitizing Agents
;
pharmacology
9.Identification of active compound combination contributing to anti-inflammatory activity of Xiao-Cheng-Qi Decoction via human intestinal bacterial metabolism.
Xing-Yan LIU ; Li LI ; Xue-Qing LI ; Bo-Yang YU ; Ji-Hua LIU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(7):513-524
Human intestinal bacteria play an important role in the metabolism of herbal medicines, leading to the variations in their pharmacological profile. The present study aimed to investigate the metabolism of Xiao-Cheng-Qi decoction (XCQD) by human intestinal bacteria and to discover active component combination (ACC) contributing to the anti-inflammatory activity of XCQD. The water extract of XCQD was anaerobically incubated with human intestinal bacteria suspensions for 48 h at 37 °C. A liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-Q-TOF/MS) method was performed for identification of the metabolites. In addition, the anti-inflammatory effects of XCQD and biotransformed XCQD (XCQD-BT) were evaluated in vitro with cytokines in RAW264.7 cells induced by lipopolysaccharide (LPS). A total of 51 compounds were identified in XCQD and XCQD-BT. Among them, 20 metabolites were proven to be transformed by human intestinal bacteria. Significantly, a combination of 14 compounds was identified as ACC from XCQD-BT, which was as effective as XCQD in cell models of inflammation. In conclusion, this study provided an applicable method, based on intestinal bacterial metabolism, for identifying combinatory compounds responsible for a certain pharmacological activity of herbal medicines.
Animals
;
Anti-Inflammatory Agents
;
isolation & purification
;
pharmacology
;
therapeutic use
;
Bacteria
;
metabolism
;
Biotransformation
;
Cytokines
;
metabolism
;
Drugs, Chinese Herbal
;
chemistry
;
metabolism
;
Feces
;
microbiology
;
Gastrointestinal Microbiome
;
drug effects
;
Humans
;
Inflammation
;
chemically induced
;
drug therapy
;
Lipopolysaccharides
;
pharmacology
;
Macrophages
;
drug effects
;
metabolism
;
Mice
;
Models, Biological
;
Molecular Structure
;
RAW 264.7 Cells
10.Disruption of the Gut Ecosystem by Antibiotics
Yonsei Medical Journal 2018;59(1):4-12
The intestinal microbiota is a complex ecosystem consisting of various microorganisms that expands human genetic repertoire and therefore affects human health and disease. The metabolic processes and signal transduction pathways of the host and intestinal microorganisms are intimately linked, and abnormal progression of each process leads to changes in the intestinal environment. Alterations in microbial communities lead to changes in functional structures based on the metabolites produced in the gut, and these environmental changes result in various bacterial infections and chronic enteric inflammatory diseases. Here, we illustrate how antibiotics are associated with an increased risk of antibiotic-associated diseases by driving intestinal environment changes that favor the proliferation and virulence of pathogens. Understanding the pathogenesis caused by antibiotics would be a crucial key to the treatment of antibiotic-associated diseases by mitigating changes in the intestinal environment and restoring it to its original state.
Anti-Bacterial Agents/pharmacology
;
Bacteria/drug effects
;
Bacteria/growth & development
;
Dysbiosis/microbiology
;
Gastrointestinal Microbiome/drug effects
;
Humans
;
Intestines/drug effects
;
Intestines/microbiology
;
Symbiosis/drug effects

Result Analysis
Print
Save
E-mail