1.Characteristics of gut microbiota determine effects of specific probiotics strains in patients with functional constipation.
Haohao ZHANG ; Lijuan SUN ; Zhixin ZHAO ; Yao ZHOU ; Yuyao LIU ; Nannan ZHANG ; Junya YAN ; Shibo WANG ; Renlong LI ; Jing ZHANG ; Xueying WANG ; Wenjiao LI ; Yan PAN ; Meixia WANG ; Bing LUO ; Mengbin LI ; Zhihong SUN ; Yongxiang ZHAO ; Yongzhan NIE
Chinese Medical Journal 2024;137(1):120-122
2.Platycladi Semen oil ameliorates Aβ_(25-35)-induced brain injury in mice based on network pharmacology and gut microbiota.
Meng-Nan ZENG ; Bing CAO ; Ao-Zi FENG ; Peng-Li GUO ; Meng LIU ; Yu-Han ZHANG ; Meng LI ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2023;48(15):4046-4059
		                        		
		                        			
		                        			The present study aimed to investigate the protective effect and underlying mechanism of Platycladi Semen oil(SP) on Aβ_(25-35)-induced brain injury in mice to provide a theoretical basis for the clinical treatment of Alzheimer's disease(AD). Male Kunming(KM) mice were randomly divided into a control group, a model group(brain injection of Aβ_(25-35), 200 μmol·L~(-1), 0.15 μL·g~(-1)), a positive drug group(donepezil, 10 mg·kg~(-1)), and low-and high-dose SP groups(0.5 and 1 mL·kg~(-1)). Learning and memory ability, neuronal damage, levels of Aβ_(1-42)/Aβ_(1-40), p-Tau, related indicators of apoptosis and oxidative stress, and immune cells, and protein and mRNA expression related to the sphingosine kinase 1(SPHK1)/sphingosine-1-phosphate(S1P)/sphingosine-1-phosphate receptor 5(S1PR5) signaling pathway of mice in each group were determined. In addition, compounds in SP were analyzed by gas chromatography-mass spectrometry(GC-MS). The mechanism of SP against AD was investigated by network pharmacology, 16S rDNA gene sequencing for gut microbiota(GM), and molecular docking techniques. The results showed that SP could improve the learning and memory function of Aβ_(25-35)-induced mice, reduce hippocampal neuronal damage, decrease the levels of Aβ_(1-42)/Aβ_(1-40), p-Tau, and indicators related to apoptosis and oxidative stress in the brain, and maintain the homeostasis of immune cells and GM. Network pharmacology and sequencing analysis for GM showed that the therapeutic effect of SP on AD was associated with the sphingolipid signaling pathway. Meanwhile,(Z,Z,Z)-9,12,15-octadecatrienoic acid and(Z,Z)-9,12-octadecadienoic acid, the components with the highest content in SP, showed good binding activity to SPHK1 and S1PR5. Therefore, it is inferred that SP exerts anti-apoptosis and antioxidant effects by regulating GM and inhibiting SPHK1/S1P/S1PR5 pathway, thereby improving brain injury induced by Aβ_(25-35) in mice. Moreover,(Z,Z,Z)-9,12,15-octadecatrienoic acid and(Z,Z)-9,12-octadecadienoic acid may be the material basis for the anti-AD effect of SP.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Semen/metabolism*
		                        			;
		                        		
		                        			Gastrointestinal Microbiome
		                        			;
		                        		
		                        			Network Pharmacology
		                        			;
		                        		
		                        			Linoleic Acid
		                        			;
		                        		
		                        			Molecular Docking Simulation
		                        			;
		                        		
		                        			Alzheimer Disease/genetics*
		                        			;
		                        		
		                        			Brain Injuries
		                        			
		                        		
		                        	
3.Effect and mechanism of Puerariae Lobatae Radix in alleviating insulin resistance in T2DM db/db mice based on intestinal flora.
Hong-Yang ZHU ; Ye LIU ; Jia-Rong LI ; Yu-Hui LIU ; Zi-Ling RONG ; Yu-Ting LI ; Shi-Yao CHANG
China Journal of Chinese Materia Medica 2023;48(17):4693-4701
		                        		
		                        			
		                        			This study aimed to examine the effect and underlying mechanism of Puerariae Lobatae Radix on insulin resistance in db/db mice with type 2 diabetes mellitus(T2DM) based on the analysis of intestinal flora. Fifty db/db mice were randomly divided into a model group(M group), a metformin group(YX group), a high-dose Puerariae Lobatae Radix group(YGG group), a medium-dose Puerariae Lobatae Radix group(YGZ group), and a low-dose Puerariae Lobatae Radix group(YGD group). Another 10 db/m mice were assigned to the normal group(K group). After continuous administration for eight weeks, body weight and blood sugar of mice were measured. Enzyme linked immunosorbent assay(ELISA) was used to detect glycosylated serum protein(GSP) and fasting serum insulin(FINS), and insulin resistance index(HOMA-IR) was calculated. The histopathological changes in the pancreas were observed by HE staining. Tumor necrosis factor(TNF)-α expression in the pancreas was detected using immunohistochemistry. The structural changes in fecal intestinal flora in the K, M, and YGZ groups were detected by 16S rRNA. Western blot was used to detect the expression of farnesoid X receptor(FXR) and takeda G protein-coupled receptor 5(TGR5) in the ileum, cholesterol 7α-hydroxylase(CYP7A1) and sterol 27α-hydroxylase(CYP27A1) in the liver, and G protein-coupled receptors 41(GPR41) and 43(GPR43) in the colon. Compared with the K group, the M group showed increased body weight, blood sugar, serum GSP, fasting blood glucose(FBG), and FINS, increased HOMA-IR, inflammatory infiltration of islet cells, necrosis and degeneration of massive acinar cells, unclear boundary between islet cells and acinar cells, disturbed intestinal flora, and down-regulated FXR, TGR5, CYP7A1, CYP27A1, GPR41, and GPR43. Compared with the M group, the YX, YGG, YGZ, and YGD groups showed decreased body weight, blood sugar, serum GSP, FBG, and FINS, islet cells with intact and clumpy morphology and clear boundary, necrosis of a few acinar cells, and more visible islet cells. The intestinal flora in the YGZ group changed from phylum to genus levels, and the relative abundance of intestinal flora affecting the metabolites of intestinal flora increased. The protein expression of FXR, TGR5, CYP7A1, CYP27A1, GPR41, and GPR43 increased. The results show that Puerariae Lobatae Radix can improve the inflammatory damage of pancreatic islet cells and reduce insulin resistance in db/db mice with T2DM. The mechanism of action may be related to the increase in the abundance of Actinobacteria, Bifidobacterium, and Bacteroides in the intestinal tract and the protein expression related to metabolites of intestinal flora.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Insulin Resistance
		                        			;
		                        		
		                        			Blood Glucose/metabolism*
		                        			;
		                        		
		                        			Diabetes Mellitus, Type 2/genetics*
		                        			;
		                        		
		                        			Pueraria/chemistry*
		                        			;
		                        		
		                        			Gastrointestinal Microbiome
		                        			;
		                        		
		                        			RNA, Ribosomal, 16S
		                        			;
		                        		
		                        			Body Weight
		                        			;
		                        		
		                        			Necrosis
		                        			
		                        		
		                        	
4.Therapeutic effect and mechanism of Mailuo Shutong Pills on posterior limb swelling caused by femur fracture in rats based on intestinal flora and intestinal metabolism.
Lan YANG ; Ming-Fei LIU ; Cheng-Hong SUN ; Hai-Xin XIANG ; Yu MIAO ; Guo-Liang CHENG
China Journal of Chinese Materia Medica 2023;48(17):4711-4721
		                        		
		                        			
		                        			This study aimed to investigate the protective effect and underlying mechanism of Mailuo Shutong Pills(MLST) on posterior limb swelling caused by femur fracture in rats. The rats were randomly divided into a sham operation group, a model group, a low-dose MLST group(1.8 g·kg~(-1)·d~(-1)), a high-dose MLST group(3.6 g·kg~(-1)·d~(-1)), and a positive drug group(60 mg·kg~(-1)·d~(-1) Maizhiling Tablets). The femur in the sham operation group was exposed and the wound was sutured, while the other four groups underwent mechanical damage to cause femur fracture. The rats were treated with corresponding drugs by gavage 7 days before modeling and 5 days after modeling, while those in the sham operation group and the model group were given an equivalent dose of distilled water by gavage. Hematoxylin-eosin(HE) staining was used to detect the pathological injury of the posterior limb muscle tissues in rats, and the degree of hind limb swelling was measured. The enzyme-linked immunosorbent assay(ELISA) kit was used to detect the expression levels of interleukin-6(IL-6), interleukin-1β(IL-1β), and tumor necrosis factor-α(TNF-α) in the serum of rats in each group. The activity of superoxide dismutase(SOD), malondialdehyde(MDA), catalase(CAT), and glutathione peroxidase(GSH-Px) in rat serum was also measured. Western blot was used to detect the protein expression levels of heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), and nuclear transcription factor E2-related factor 2(Nrf2) in rat posterior limb muscle tissues. The changes in the intestinal flora and intestinal metabolites in rats were detected by 16S rDNA sequencing and ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS), respectively, to explore the underlying mechanism of MLST in treating posterior limb swelling caused by femur fracture in rats. Compared with the model group, MLST significantly improved the degree of posterior limb swelling in rats, reduced the levels of serum inflammatory factors, and alleviated oxidative stress injury. The HE staining results showed that the inflammatory infiltration in the posterior limb muscle tissues of rats in the MLST groups was significantly improved. Western blot results showed that MLST significantly increased the protein expression of HO-1, NQO1, and Nrf2 in rat posterior limb muscle tissues compared with the model group. The 16S rDNA sequencing results showed that MLST improved the disorder of intestinal flora in rats after femur fracture. The UPLC-MS/MS results showed that MLST significantly affected the bile acid biosynthesis and metabolism pathway in the intestine after femur fracture, and the Spearman analysis confirmed that the metabolite deoxycholic acid involved in bile acid biosynthesis was positively correlated with the abundance of Turicibacter. The metabolite cholic acid was positively correlated with the abundance of Papilibacter, Staphylococcus, and Intestinimonas. The metabolite lithocholic acid was positively correlated with Papilibacter and Intestinimonas. The above results indicated that MLST could protect against the posterior limb swelling caused by femur fracture in rats. This protective effect may be achieved by improving the pathological injury of the posterior limb muscle, reducing the expression levels of inflammatory and oxidative stress-related factors in serum, reducing the oxidative injury of the posterior limb muscle, improving intestinal flora, and balancing the biosynthesis of bile acids in the intestine.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			NF-E2-Related Factor 2/metabolism*
		                        			;
		                        		
		                        			Gastrointestinal Microbiome
		                        			;
		                        		
		                        			Chromatography, Liquid
		                        			;
		                        		
		                        			Multilocus Sequence Typing
		                        			;
		                        		
		                        			Tandem Mass Spectrometry
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Femur
		                        			;
		                        		
		                        			Bile Acids and Salts
		                        			;
		                        		
		                        			DNA, Ribosomal
		                        			;
		                        		
		                        			Superoxide Dismutase/metabolism*
		                        			
		                        		
		                        	
5.Research progress in gut-skin axis and its association with traditional Chinese medicine theory.
Yong-Mei GUAN ; Shi-Chun ZHAO ; Qiong LI ; Li-Hua CHEN ; Fei WANG ; Huan-Huan DONG ; Fang WANG ; Xiao-Fan CHEN ; Hua ZHANG ; Wei-Feng ZHU
China Journal of Chinese Materia Medica 2023;48(18):4908-4918
		                        		
		                        			
		                        			Currently, the gut-organ axis has become a hot research topic. As increasing attention has been paid to the role of gut microbiota in the health of organs, the complex and integrated dialogue mechanism between the gastrointestinal tract and the associated microbiota has been demonstrated in more and more studies. Skin as the largest organ in the human body serves as the primary barrier protecting the human body from damage. The proposal of the gut-skin axis has established a bidirectional link between the gut and the skin. The disturbance of gut microbiota can lead to the occurrence of skin diseases, the mechanism of which is complex and may involve multiple pathways in immunity, metabolism, and internal secretion. According to the theory of traditional Chinese medicine(TCM), the connection between the intestine and the skin can be established through the lung, and the interior disorders will definitely cause symptoms on the exterior. This paper reviews the research progress in the gut-skin axis and its correlation with TCM theory and provides ideas and a basis for cli-nical treatment and drug development of skin and intestinal diseases.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Medicine, Chinese Traditional
		                        			;
		                        		
		                        			Gastrointestinal Tract
		                        			;
		                        		
		                        			Skin Diseases/drug therapy*
		                        			;
		                        		
		                        			Gastrointestinal Microbiome
		                        			
		                        		
		                        	
6.Research progress in signaling pathways related to treatment of functional dyspepsia with traditional Chinese medicine.
Yu CHANG ; Gen-Shuang ZHANG ; Yi-Chuan ZHANG ; Yong-Mei LIU ; Ming-Ming FAN
China Journal of Chinese Materia Medica 2023;48(20):5397-5403
		                        		
		                        			
		                        			Functional dyspepsia(FD) is a prevalent functional gastrointestinal disease characterized by recurrent and long-lasting symptoms that significantly impact the quality of life of patients. Currently, western medicine treatment has not made breakthrough progress and mainly relies on symptomatic therapies such as gastrointestinal motility agents, acid suppressants, antidepressants/anxiolytics, and psychotherapy. However, these treatments have limitations in terms of insufficient effectiveness and safety. Traditional Chinese medicine(TCM) possesses unique advantages in the treatment of FD. Through literature search in China and abroad, it has been found that the mechanisms of TCM in treating FD is associated with various signaling pathways, and research on these signaling pathways and molecular mechanisms has gradually become a focus. The main signaling pathways include the SCF/c-Kit signaling pathway, 5-HT signaling pathway, CRF signaling pathway, AMPK signaling pathway, TRPV1 signaling pathway, NF-κB signaling pathway, and RhoA/ROCK2/MYPT1 signaling pathway. This series of signaling pathways can promote gastrointestinal motility, alleviate anxiety, accelerate gastric emptying, reduce visceral hypersensitivity, and improve duodenal micro-inflammation in the treatment of FD. This article reviewed the research on TCM's regulation of relevant signaling pathways in the treatment of FD, offering references and support for further targeted TCM research in the treatment of FD.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Dyspepsia/genetics*
		                        			;
		                        		
		                        			Medicine, Chinese Traditional
		                        			;
		                        		
		                        			Quality of Life
		                        			;
		                        		
		                        			Gastrointestinal Agents/therapeutic use*
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
7.Parkinson's Disease: A Multisystem Disorder.
Helena Nunes COSTA ; Ana Raquel ESTEVES ; Nuno EMPADINHAS ; Sandra Morais CARDOSO
Neuroscience Bulletin 2023;39(1):113-124
		                        		
		                        			
		                        			The way sporadic Parkinson's disease (PD) is perceived has undergone drastic changes in recent decades. For a long time, PD was considered a brain disease characterized by motor disturbances; however, the identification of several risk factors and the hypothesis that PD has a gastrointestinal onset have shed additional light. Today, after recognition of prodromal non-motor symptoms and the pathological processes driving their evolution, there is a greater understanding of the involvement of other organ systems. For this reason, PD is increasingly seen as a multiorgan and multisystemic pathology that arises from the interaction of susceptible genetic factors with a challenging environment during aging-related decline.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Parkinson Disease/pathology*
		                        			;
		                        		
		                        			Gastrointestinal Tract
		                        			;
		                        		
		                        			Risk Factors
		                        			;
		                        		
		                        			Gastrointestinal Microbiome
		                        			;
		                        		
		                        			Prodromal Symptoms
		                        			;
		                        		
		                        			alpha-Synuclein
		                        			
		                        		
		                        	
10.Interaction between mucus layer and gut microbiota in non-alcoholic fatty liver disease: Soil and seeds.
Binbin ZHANG ; Jie LI ; Jinlong FU ; Li SHAO ; Luping YANG ; Junping SHI
Chinese Medical Journal 2023;136(12):1390-1400
		                        		
		                        			
		                        			The intestinal mucus layer is a barrier that separates intestinal contents and epithelial cells, as well as acts as the "mucus layer-soil" for intestinal flora adhesion and colonization. Its structural and functional integrity is crucial to human health. Intestinal mucus is regulated by factors such as diet, living habits, hormones, neurotransmitters, cytokines, and intestinal flora. The mucus layer's thickness, viscosity, porosity, growth rate, and glycosylation status affect the structure of the gut flora colonized on it. The interaction between "mucus layer-soil" and "gut bacteria-seed" is an important factor leading to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Probiotics, prebiotics, fecal microbiota transplantation (FMT), and wash microbial transplantation are efficient methods for managing NAFLD, but their long-term efficacy is poor. FMT is focused on achieving the goal of treating diseases by enhancing the "gut bacteria-seed". However, a lack of effective repair and management of the "mucus layer-soil" may be a reason why "seeds" cannot be well colonized and grow in the host gut, as the thinning and destruction of the "mucus layer-soil" is an early symptom of NAFLD. This review summarizes the existing correlation between intestinal mucus and gut microbiota, as well as the pathogenesis of NAFLD, and proposes a new perspective that "mucus layer-soil" restoration combined with "gut bacteria-seed" FMT may be one of the most effective future strategies for enhancing the long-term efficacy of NAFLD treatment.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Non-alcoholic Fatty Liver Disease/therapy*
		                        			;
		                        		
		                        			Gastrointestinal Microbiome
		                        			;
		                        		
		                        			Probiotics
		                        			;
		                        		
		                        			Prebiotics
		                        			;
		                        		
		                        			Fecal Microbiota Transplantation
		                        			;
		                        		
		                        			Bacteria
		                        			;
		                        		
		                        			Liver/pathology*
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail