1.Genetic and clinical analysis of a novel GLB1 gene variant in a Chinese patient with GM1-gangliosidosis.
Shuangxi CHENG ; Qingming WANG ; Aixin CHEN ; Lingfang ZHOU ; Xiaochun HONG ; Haiming YUAN
Chinese Journal of Medical Genetics 2022;39(5):537-541
OBJECTIVE:
To explore the genotype-phenotype correlation of a case with GM1-gangliosidosis caused by compound heterogenic variants in GLB1.
METHODS:
Genomic DNA was extracted from peripheral blood samples from the patient and her parents. Trio-based whole-exome sequencing (WES) was performed for the family and suspected mutation was verified by Sanger sequencing.
RESULTS:
The proband, a 2-year-3-month old Chinese girl, presented with psychomotor deterioration, absent speech, intellectual disabilities and behavior problem. Trio-based WES has identified compound heterozygosity for 2 variants in the GLB1 gene: NM_000404.2:c.1343A>T, p.Asp448Val and c.1064A>C, p.Gln355Pro (GRCh37/hg19),which was inherited from the mother and father, respectively. Homozygous or compound heterozygous pathogenic variants in GLB1, encoding β-galactosidase, are responsible for GM1-gangliosidosis,an autosomal recessive lysosomal storage disorder characterized by variable degrees of neurodegeneration and skeletal abnormalities. The p.Asp448Val variant has been classified as pathogenic for GM1 gangliosidosis in medical literatures for the reason that functional studies demonstrated that expression of the p.Asp448Val variant in COS-1 cells resulted in no detectable β-galactosidase activity compared to wild type GLB1. The p.Gln355Pro variant has not been reported in literatures or database. The variant is highly conserved residue (PM1), and was not found in either the Genome Aggregation Database or the 1000 Genomes Project (PM2) and was predicted to have a deleterious effect on the gene product by multiple in silico prediction tools (PP3). Next, the β-galactosidase activity of the patient's peripheral blood leukocytes was determined by fluorescent method. The result was 0.0 nmol/mg. It showed that the p.Gln355Pro variant also resulted in loss of β-galactosidase activity, thus the variant was classified into clinical pathogenic variant.
CONCLUSION
Our study expands the mutational spectrum of the GLB1 gene and provides genetic counseling for the family.
Asians/genetics*
;
China
;
Female
;
G(M1) Ganglioside
;
Gangliosidosis, GM1/genetics*
;
Humans
;
Mutation
;
beta-Galactosidase/genetics*
2.Progressive psychomotor regression for 2.5 years in a boy aged 5 years.
Mao-Qiang TIAN ; Xiao-Xi CHEN ; Lei LI ; Chang-Hui LANG ; Juan LI ; Jing CHEN ; Xiao-Hua YU ; Xiao-Mei SHU
Chinese Journal of Contemporary Pediatrics 2022;24(6):699-704
A boy, aged 5 years, attended the hospital due to progressive psychomotor regression for 2.5 years. Motor function regression was the main manifestation in the early stage, and brain MRI and whole-exome sequencing (WES) of the family showed no abnormalities. After the age of 4 years and 9 months, the boy developed cognitive function regression, and brain MRI showed cerebellar atrophy. The reanalysis of WES results revealed a compound heterozygous mutation, [NM_000520, c.784C>T(p.His262Tyr]), c.1412C>T(p.Pro471Leu)], in the HEXA gene. The enzyme activity detection showed a significant reduction in the level of β-hexosaminidase encoded by this gene. The boy was diagnosed with juvenile Tay-Sachs disease (TSD). TSD has strong clinical heterogeneity, and cerebellar atrophy may be an important clue for the diagnosis of juvenile TSD. The reanalysis of genetic data when appropriate based on disease evolution may improve the positive rate of WES.
Atrophy
;
Humans
;
Magnetic Resonance Imaging
;
Male
;
Mutation
;
Tay-Sachs Disease/genetics*
3.Clinical characteristics and genetic analysis of a child with infantile Sandhoff disease and eosinophilia.
Haixia ZHU ; Wenlin WU ; Wenxiong CHEN ; Yiru ZENG ; Yuan ZHAO ; Xiuying WANG ; Xiaojing LI
Chinese Journal of Medical Genetics 2022;39(10):1124-1128
OBJECTIVE:
To explore the genetic basis for a girl featuring epilepsy, developmental delay and regression.
METHODS:
Clinical data of the patient was collected. Activities of hexosaminidase A (Hex A) and hexosaminidase A&B (Hex A&B) in blood leukocytes were determined by using a fluorometric assay. Peripheral blood samples were collected from the proband and six members from her pedigree. Following extraction of genomic DNA, whole exome sequencing was carried out. Candidate variants were verified by Sanger sequencing.
RESULTS:
Enzymatic studies of the proband have shown reduced plasma Hex A and Hex A&B activities. Genetic testing revealed that she has carried c.1260_1263del and c.1601G>C heterozygous compound variants of the HEXB gene. Her mother, brother and sister were heterozygous carriers of c.1260_1263del, while her father, mother, three brothers and sister did not carry the c.1601G>C variant, suggesting that it has a de novo origin. Increased eosinophils were discovered upon cytological examination of peripheral blood and bone marrow samples.
CONCLUSION
The compound heterozygous variants of c.1260_1263del and c.1601G>C of the HEXB gene probably underlay the Sandhoff disease in this child. Eosinophilia may be noted in infantile Sandhoff disease.
Child
;
Eosinophilia/genetics*
;
Female
;
Genetic Testing
;
Hexosaminidase A/genetics*
;
Hexosaminidase B/genetics*
;
Humans
;
Male
;
Mutation
;
Pedigree
;
Sandhoff Disease/genetics*
4.Identification and pathogenicity prediction of a novel GLB1 variant c.101T>C (p.Ile34Thr) in an infant with GM1 gangliosidosis.
Xue-Rong LAN ; Jian-Wu QIU ; Hua LI ; Xiang-Ran CAI ; Yuan-Zong SONG
Chinese Journal of Contemporary Pediatrics 2019;21(1):71-76
GM1 gangliosidosis is an autosomal recessive disorder caused by galactosidase beta1 (GLB1) gene variants which affect the activity of β-galactosidase (GLB). GLB dysfunction causes abnormalities in the degradation of GM1 and its accumulation in lysosome. This article reports the clinical and genetic features of a child with GM1 gangliosidosis. The girl, aged 2 years and 5 months, was referred to the hospital due to motor developmental regression for more than one year. Physical examination showed binocular deflection and horizontal nystagmus, but no abnormality was found on fundoscopy. The girl had increased muscular tone of the extremities, limitation of motion of the elbow, knee, and ankle joints, and hyperactive patellar tendon reflex. Blood biochemical examination showed a significant increase in aspartate aminotransferase. The 24-hour electroencephalographic monitoring detected frequent seizure attacks and diffuse θ wave activity, especially in the right hemisphere. Head magnetic resonance imaging showed thinner white matter in the periventricular region and diffuse high T2WI signal with unclear boundary. Three-dimensional reconstruction of white matter fiber tracts by diffusion tensor imaging showed smaller and thinner white matter fiber tracts, especially in the right hemisphere. Genetic analysis showed that the girl had compound heterozygous mutations of c.446C>T (p.Ser149Phe) and c.101T>C (p.Ile34Thr) in the GLB1 gene from her parents, among which c.101T>C (p.Ile34Thr) had not been reported in the literatures. The girl was finally diagnosed with GM1 gangliosidosis. Her conditions were not improved after antiepileptic treatment and rehabilitation training for 2 months.
Diffusion Tensor Imaging
;
Female
;
Gangliosidosis, GM1
;
genetics
;
Humans
;
Infant
;
Mutation
;
Virulence
;
beta-Galactosidase
;
genetics
5.Novel mutations of GLB1 gene identified in a Chinese pedigree affected with GM1 gangliosidosis.
Min GAO ; Ruifeng JIN ; Kaihui ZHANG ; Zhiyi LI ; Zhongtao GAI ; Yi LIU
Chinese Journal of Medical Genetics 2019;36(2):128-131
OBJECTIVE:
To explore the genetic cause for a child with growth retardation by next generation sequencing (NGS).
METHODS:
Clinical data of the patient was collected. Peripheral venous blood samples were taken from the neonate and his parents. Targeted capturing and NGS were carried out to detect mutations of genes associated with inborn errors of metabolism. Suspected mutations were validated by Sanger sequencing.
RESULTS:
The 15-month-old female patient was admitted to hospital for growth retardation for 4 months. Hypomyelination was found upon cranium MRI. Genetic testing revealed two novel insertional mutations in the GLB1 gene in the patient, namely c.2006-2007insT and c.475-476 insGGTCC.
CONCLUSION
The c.2006-2007insT and c.475-476 insGGTCC mutations of the GLB1 gene probably underlie the GM1 gangliosidosis resulting in the growth retardation in the child.
Female
;
Gangliosidosis, GM1
;
genetics
;
Humans
;
Infant
;
Infant, Newborn
;
Mutation
;
Pedigree
;
beta-Galactosidase
;
genetics
6.Analysis of HEXB gene mutations in an infant with Sandhoff disease.
Ruohao WU ; Wenting TANG ; Kunyin QIU ; Yu LI ; Lirong LU ; Dongfang LI
Chinese Journal of Medical Genetics 2019;36(9):930-934
OBJECTIVE:
To detect potential mutations of HEXB gene in an infant with Sandhoff disease (SD).
METHODS:
Genomic DNA was extracted from peripheral blood sample of the infant. All coding exons (exons 1 to 14) and splicing sites of the HEXB gene were subjected to PCR amplification and direct sequencing.PubMed Protein BLAST system was employed to analyze cross-species conservation of the mutant amino acid. PubMed BLAST CD-search was performed to identify functional domains destroyed by thecandidate mutations. Impact of the mutations was analyzed with software including PolyPhen-2, Mutation Taster and SIFT. Whole-exome sequencing was carried out to identify additional mutations.
RESULTS:
The infant was found to carry compound heterozygous mutations c.1652G>A(p.Cys551Tyr) and c.1389C>G (p.Tyr463*) of the HEXB gene. The c.1389C>G (p.Tyr463*) mutation may lead to destruction of two functional domains in β subunit of the Hex protein. The c.1652G>A(p.Cys551Tyr) mutation, unreported previously,was predicted to be probably damaging by Bioinformatic analysis.
CONCLUSION
Compound heterozygous mutations c.1652G>A(p.Cys551Tyr) and c.1389C>G (p.Tyr463*) in the HEXB gene probably underlie the disease in this patient.
DNA Mutational Analysis
;
Exons
;
Heterozygote
;
Humans
;
Infant
;
Mutation
;
Polymerase Chain Reaction
;
Sandhoff Disease
;
genetics
;
beta-Hexosaminidase beta Chain
;
genetics
7.An Infantile Case of Sandhoff Disease Presenting With Swallowing Difficulty.
Jae Gun MOON ; Min A SHIN ; Hannah PYO ; Seong Uk CHOI ; Hyun Kyung KIM
Annals of Rehabilitation Medicine 2017;41(5):892-896
Infants with Sandhoff disease typically appear normal until 3–6 months of age. As the disease progresses, they present with symptoms such as loss of motor skills, exaggerated startle response to loud noise, seizures, visual loss, and paralysis. We encountered a rare case of a 22-month-old girl with Sandhoff disease characterized by progressive motor weakness and dysphagia, who initially showed signs of aspiration at 20 months of age. The major problems related to dysphagia were oromotor dysfunction and abnormal feeding posture. Within 3 months of identification of difficulty in swallowing, the patient showed a significant decrease in food intake, with rapid deterioration of nutritional status. We report our case with a review of the literature.
Deglutition Disorders
;
Deglutition*
;
Eating
;
Female
;
Humans
;
Infant
;
Motor Skills
;
Noise
;
Nutritional Status
;
Paralysis
;
Posture
;
Reflex, Startle
;
Sandhoff Disease*
;
Seizures
8.A novel frameshift mutation of HEXA gene in the first family with classical infantile Tay-Sachs disease in Thailand
Boonchai Boonyawat ; Tim Phetthong ; Charcrin Nabangchang ; Piradee Suwanpakdee
Neurology Asia 2016;21(3):281-285
Tay-Sachs disease (TSD) is an autosomal recessive neurodegenerative disorder caused by mutations in
the HEXA gene resulting in a deficiency of β-hexosaminidase A (HEX A) enzyme. To our knowledge,
TSD has never been reported in Thai population. We describe the first case of classic infantile TSD in
a 2-year-old Thai boy who presented with first episode of seizure and neuroregression since 9 months
of age. Hyperacusis, progressive macrocephaly and macular cherry red spots were also detected during
examination. Brain MRI revealed hyperintensity in the basal ganglion on T1-weighted and partial
corpus callosum agenesis. Measurement of β-hexosaminidase activity in the patient leukocytes showed
low total β-hexosaminidase (62.6 normal 801+/-190 nmol/mg protein/hr) and low %HEX A (7.57
normal 55-72%HEX A) activity compatible with TSD. Mutation analysis of the HEXA gene revealed
compound heterozygous of a novel frameshift mutation (c.1207delG or p.E403SfsX20) in exon 11
which was inherited from the mother and a previously described missense mutation (c.1510C>T or
p.R504C) in exon 13 which was inherited from the father, respectively.
Conclusion. We report a clinical, biochemical and molecular analysis in the first case of genetically
confirmed classic infantile TSD in Thailand.
Tay-Sachs Disease
9.Clinical and molecular characteristics of a child with juvenile Sandhoff disease.
Yonglan HUANG ; Ting XIE ; Jipeng ZHENG ; Xiaoyuan ZHAO ; Hongsheng LIU ; Li LIU
Chinese Journal of Pediatrics 2014;52(4):313-316
OBJECTIVETo explore the clinical features and molecular mutation of HEXB gene in a case with juvenile Sandhoff disease.
METHODWe retrospectively reviewed the clinical, neuroimaging and biochemical findings in this Chinese child with juvenile Sandhoff disease. Hexosaminidase A and hexosaminidase A & B activities were measured in blood leukocytes by fluorometric assay. HEXB gene molecular analysis was performed by PCR and direct sequencing.
RESULTThe 9-year-old boy was admitted for psychomotor regression. He presented slowly progressive gait disorder and dysarthria during the last three years. Cranial MRI revealed a marked cerebellar atrophy with normal intensity in the thalamus and basal ganglia. Brain MRS showed normal in the thalamus and basal ganglia. Hexosaminidase A was 69.5 (mg·h) [normal controls 150-360 nmol/(mg·h)], hexosaminidase A & B activity was 119 nmol/(mg·h)[normal controls 600-3 500 nmol/(mg·h)], confirming the diagnosis of Sandhoff disease. The patient was a compound heterozygote for a novel deletion mutation c.1404delT (p. P468P fsX62) and a reported mutation c.1509-26G>A.
CONCLUSIONThe clinical features of juvenile Sandhoff disease include ataxia, dysarthria and cerebellar atrophy. The enzyme assay and molecular analysis of HEXB gene can confirm the diagnosis of Sandhoff disease. The novel mutation c.1404delT(p. P468P fsX62) is a disease-related mutation.
Brain ; diagnostic imaging ; pathology ; Cerebellar Ataxia ; diagnosis ; enzymology ; genetics ; Child ; DNA Mutational Analysis ; Heterozygote ; Hexosaminidase A ; blood ; metabolism ; Hexosaminidase B ; blood ; metabolism ; Humans ; Leukocytes ; enzymology ; Magnetic Resonance Imaging ; Male ; Mutation ; Radiography ; Retrospective Studies ; Sandhoff Disease ; diagnosis ; enzymology ; genetics ; beta-Hexosaminidase beta Chain ; genetics
10.HEXB gene study and prenatal diagnosis for a family affected by infantile Sandhoff disease.
Tongfei WU ; Xiyuan LI ; Qiao WANG ; Yupeng LIU ; Yuan DING ; Jinqing SONG ; Yao ZHANG ; Yanling YANG
Journal of Zhejiang University. Medical sciences 2013;42(4):403-410
OBJECTIVETo investigate the phenotype and genotype of a Chinese boy and his family affected by infantile Sandhoff disease.
METHODSThe proband, a boy, was the first child born to a non-consanguineous couple. He showed startle reaction after birth and progressive psychomotor regression from the age of 8 months. From the age of 16 months, he presented seizures. When he was admitted at 17 months old, severe mental retardation and weakness were observed. Fundus examination revealed bilateral cherry-red spots in the macula and optic atrophy. Cranial MRI revealed abnormal signals in the thalamus, basal ganglia and white matter. Enzymatic assay and genetic testing were performed for the diagnosis. His mother visited us at 18 weeks of pregnancy seeking for prenatal diagnosis. HEXB gene diagnosis to the fetus was performed by direct sequencing.
RESULTSSignificant deficient total β-hexosaminidase (A and B) activity in peripheral leucocytes of the patient (0.0 nmol/h/mg compared with normal control, 41.9 to 135.1 nmol/h/mg) supported the diagnosis of Sandhoff disease. On his HEXB gene, two mutations were found. c.1645G-A (p.G549R) was novel. c.IVS7-48T was a reported mutation. Now, the patient was 2 years and 3 months old, with progressive general failure, severe epilepsy, blindness and hypermyotonia. Subsequently, the mother visited us at 18 weeks of pregnancy seeking for prenatal diagnosis. HEXB gene analysis of the amniocytes was performed by direct sequencing. Both of the two mutations were not detected from cultured amniocytes. The result revealed that the fetus was not affected by Sandhoff disease. A healthy girl, the sibling of the proband, was born in term. Postnatal enzyme analysis and genetic analysis of the cord blood cells confirmed the prenatal diagnosis.
CONCLUSIONOne novel mutation on HEXB gene was identified. Prenatal diagnosis to the fetus of this family was performed by amniocytes gene analysis.
Adult ; Amniotic Fluid ; cytology ; Child, Preschool ; DNA Mutational Analysis ; Female ; Genetic Testing ; Humans ; Male ; Mutation ; Pregnancy ; Prenatal Diagnosis ; Sandhoff Disease ; diagnosis ; genetics ; beta-Hexosaminidase beta Chain ; genetics

Result Analysis
Print
Save
E-mail