1.Inhibition of KLF7-Targeting MicroRNA 146b Promotes Sciatic Nerve Regeneration.
Wen-Yuan LI ; Wei-Ting ZHANG ; Yong-Xia CHENG ; Yan-Cui LIU ; Feng-Guo ZHAI ; Ping SUN ; Hui-Ting LI ; Ling-Xiao DENG ; Xiao-Feng ZHU ; Ying WANG
Neuroscience Bulletin 2018;34(3):419-437
A previous study has indicated that Krüppel-like factor 7 (KLF7), a transcription factor that stimulates Schwann cell (SC) proliferation and axonal regeneration after peripheral nerve injury, is a promising therapeutic transcription factor in nerve injury. We aimed to identify whether inhibition of microRNA-146b (miR-146b) affected SC proliferation, migration, and myelinated axon regeneration following sciatic nerve injury by regulating its direct target KLF7. SCs were transfected with miRNA lentivirus, miRNA inhibitor lentivirus, or KLF7 siRNA lentivirus in vitro. The expression of miR146b and KLF7, as well as SC proliferation and migration, were subsequently evaluated. In vivo, an acellular nerve allograft (ANA) followed by injection of GFP control vector or a lentiviral vector encoding an miR-146b inhibitor was used to assess the repair potential in a model of sciatic nerve gap. miR-146b directly targeted KLF7 by binding to the 3'-UTR, suppressing KLF7. Up-regulation of miR-146b and KLF7 knockdown significantly reduced the proliferation and migration of SCs, whereas silencing miR-146b resulted in increased proliferation and migration. KLF7 protein was localized in SCs in which miR-146b was expressed in vivo. Similarly, 4 weeks after the ANA, anti-miR-146b increased KLF7 and its target gene nerve growth factor cascade, promoting axonal outgrowth. Closer analysis revealed improved nerve conduction and sciatic function index score, and enhanced expression of neurofilaments, P0 (anti-peripheral myelin), and myelinated axon regeneration. Our findings provide new insight into the regulation of KLF7 by miR-146b during peripheral nerve regeneration and suggest a potential therapeutic strategy for peripheral nerve injury.
Animals
;
Cell Movement
;
genetics
;
Cell Proliferation
;
genetics
;
Disease Models, Animal
;
Female
;
Ganglia, Spinal
;
cytology
;
Gene Expression Regulation
;
genetics
;
physiology
;
HEK293 Cells
;
Humans
;
Kruppel-Like Transcription Factors
;
genetics
;
metabolism
;
Male
;
MicroRNAs
;
genetics
;
metabolism
;
Motor Endplate
;
genetics
;
Myelin P0 Protein
;
metabolism
;
Nerve Regeneration
;
genetics
;
physiology
;
Nerve Tissue Proteins
;
metabolism
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Rats, Wistar
;
Sciatic Neuropathy
;
metabolism
;
surgery
;
therapy
2.Differential Inhibition of Nav1.7 and Neuropathic Pain by Hybridoma-Produced and Recombinant Monoclonal Antibodies that Target Nav1.7 : Differential activities of Nav1.7-targeting monoclonal antibodies.
Sangsu BANG ; Jiho YOO ; Xingrui GONG ; Di LIU ; Qingjian HAN ; Xin LUO ; Wonseok CHANG ; Gang CHEN ; Sang-Taek IM ; Yong Ho KIM ; Judith A STRONG ; Ma-Zhong ZHANG ; Jun-Ming ZHANG ; Seok-Yong LEE ; Ru-Rong JI
Neuroscience Bulletin 2018;34(1):22-41
The voltage-gated Na channel subtype Nav1.7 is important for pain and itch in rodents and humans. We previously showed that a Nav1.7-targeting monoclonal antibody (SVmab) reduces Na currents and pain and itch responses in mice. Here, we investigated whether recombinant SVmab (rSVmab) binds to and blocks Nav1.7 similar to SVmab. ELISA tests revealed that SVmab was capable of binding to Nav1.7-expressing HEK293 cells, mouse DRG neurons, human nerve tissue, and the voltage-sensor domain II of Nav1.7. In contrast, rSVmab showed no or weak binding to Nav1.7 in these tests. Patch-clamp recordings showed that SVmab, but not rSVmab, markedly inhibited Na currents in Nav1.7-expressing HEK293 cells. Notably, electrical field stimulation increased the blocking activity of SVmab and rSVmab in Nav1.7-expressing HEK293 cells. SVmab was more effective than rSVmab in inhibiting paclitaxel-induced mechanical allodynia. SVmab also bound to human DRG neurons and inhibited their Na currents. Finally, potential reasons for the differential efficacy of SVmab and rSVmab and future directions are discussed.
Animals
;
Antibodies, Monoclonal
;
therapeutic use
;
Biotin
;
metabolism
;
Cells, Cultured
;
Disease Models, Animal
;
Female
;
Ganglia, Spinal
;
cytology
;
HEK293 Cells
;
Humans
;
Hybridomas
;
chemistry
;
Hyperalgesia
;
drug therapy
;
Male
;
Mice
;
Mice, Inbred C57BL
;
NAV1.5 Voltage-Gated Sodium Channel
;
metabolism
;
NAV1.7 Voltage-Gated Sodium Channel
;
chemistry
;
immunology
;
metabolism
;
Neuralgia
;
drug therapy
;
metabolism
;
Protein Binding
;
drug effects
;
Recombinant Proteins
;
biosynthesis
;
therapeutic use
;
Sensory Receptor Cells
;
drug effects
;
physiology
3.Somatosensory Neuron Typing with High-Coverage Single-Cell RNA Sequencing and Functional Analysis.
Changlin LI ; Sashuang WANG ; Yan CHEN ; Xu ZHANG
Neuroscience Bulletin 2018;34(1):200-207
Different physical and chemical stimuli are detected by the peripheral sensory receptors of dorsal root ganglion (DRG) neurons, and the generated inputs are transmitted via afferent fibers into the central nervous system. The gene expression profiles of DRG neurons contribute to the generation, transmission, and regulation of various somatosensory signals. Recently, the single-cell transcriptomes, cell types, and functional annotations of somatosensory neurons have been studied. In this review, we introduce our classification of DRG neurons based on single-cell RNA-sequencing and functional analyses, and discuss the technical approaches. Moreover, studies on the molecular and cellular mechanisms underlying somatic sensations are discussed.
Animals
;
Ganglia, Spinal
;
cytology
;
Gene Regulatory Networks
;
Humans
;
Pain
;
genetics
;
metabolism
;
pathology
;
Sensory Receptor Cells
;
metabolism
;
Sequence Analysis, RNA
;
Transcriptome
4.Expression and Role of Voltage-Gated Sodium Channels in Human Dorsal Root Ganglion Neurons with Special Focus on Nav1.7, Species Differences, and Regulation by Paclitaxel.
Wonseok CHANG ; Temugin BERTA ; Yong Ho KIM ; Sanghoon LEE ; Seok-Yong LEE ; Ru-Rong JI
Neuroscience Bulletin 2018;34(1):4-12
Voltage-gated sodium channels (Navs) play an important role in human pain sensation. However, the expression and role of Nav subtypes in native human sensory neurons are unclear. To address this issue, we obtained human dorsal root ganglion (hDRG) tissues from healthy donors. PCR analysis of seven DRG-expressed Nav subtypes revealed that the hDRG has higher expression of Nav1.7 (~50% of total Nav expression) and lower expression of Nav1.8 (~12%), whereas the mouse DRG has higher expression of Nav1.8 (~45%) and lower expression of Nav1.7 (~18%). To mimic Nav regulation in chronic pain, we treated hDRG neurons in primary cultures with paclitaxel (0.1-1 μmol/L) for 24 h. Paclitaxel increased the Nav1.7 but not Nav1.8 expression and also increased the transient Na currents and action potential firing frequency in small-diameter (<50 μm) hDRG neurons. Thus, the hDRG provides a translational model in which to study "human pain in a dish" and test new pain therapeutics.
Action Potentials
;
drug effects
;
Animals
;
Antineoplastic Agents, Phytogenic
;
pharmacology
;
Dose-Response Relationship, Drug
;
Electric Stimulation
;
Excitatory Postsynaptic Potentials
;
drug effects
;
Female
;
Ganglia, Spinal
;
cytology
;
Gene Expression Regulation
;
drug effects
;
Humans
;
In Vitro Techniques
;
Male
;
Mice
;
NAV1.7 Voltage-Gated Sodium Channel
;
genetics
;
metabolism
;
Neurons
;
drug effects
;
metabolism
;
Paclitaxel
;
pharmacology
;
Patch-Clamp Techniques
;
Species Specificity
5.Continuous Low-dose-rate Irradiation of Iodine-125 Seeds Inhibiting Perineural Invasion in Pancreatic Cancer.
Zheng LU ; Teng-Hui DONG ; Pei-Ren SI ; Wei SHEN ; Yi-Liang BI ; Min MIN ; Xin CHEN ; Yan LIU
Chinese Medical Journal 2016;129(20):2460-2468
BACKGROUNDPerineural invasion (PNI) is a histopathological characteristic of pancreatic cancer (PanCa). The aim of this study was to observe the treatment effect of continuous low-dose-rate (CLDR) irradiation to PNI and assess the PNI-related pain relief caused by iodine-125 ( 125 I) seed implantation.
METHODSThe in vitro PNI model established by co-culture with dorsal root ganglion (DRG) and cancer cells was interfered under 2 and 4 Gy of 125 I seeds CLDR irradiation. The orthotopic models of PNI were established, and 125 I seeds were implanted in tumor. The PNI-related molecules were analyzed. In 30 patients with panCa, the pain relief was assessed using a visual analog scale (VAS). Pain intensity was measured before and 1 week, 2 weeks, and 1, 3, and 6 months after 125 I seed implantation.
RESULTSThe co-culture of DRG and PanCa cells could promote the growth of PanCa cells and DRG neurites. In co-culture groups, the increased number of DRG neurites and pancreatic cells in radiation group was significantly less. In orthotopic models, the PNI-positive rate in radiation and control group was 3/11 and 7/11; meanwhile, the degrees of PNI between radiation and control groups was significant difference (P < 0.05). At week 2, the mean VAS pain score in patients decreased by 50% and significantly improved than the score at baseline (P < 0.05). The pain scores were lower in all patients, and the pain-relieving effect was retained about 3 months.
CONCLUSIONSThe CLDR irradiation could inhibit PNI of PanCa with the value of further study. The CLDR irradiation could do great favor in preventing local recurrence and alleviating pain.
Animals ; Apoptosis ; radiation effects ; Cell Line, Tumor ; Coculture Techniques ; Dose-Response Relationship, Radiation ; Ganglia, Spinal ; cytology ; Humans ; Iodine Radioisotopes ; therapeutic use ; Mice ; Mice, SCID ; Neoplasm Recurrence, Local ; radiotherapy ; Pancreatic Neoplasms ; radiotherapy ; Rats
6.Effects of curcumin on sodium currents of dorsal root ganglion neurons in type 2 diabetic neuropathic pain rats.
Bo MENG ; Lu-lu SHEN ; Xiao-ting SHI ; Yong-sheng GONG ; Xiao-fang FAN ; Jun LI ; Hong CAO
Chinese Journal of Applied Physiology 2015;31(6):541-548
Along with the development of economy and society, type 2 diabetic mellitus (T2DM) has become one of the most common diseases at the global level. As one of the complications of T2DM, diabetic neuropathic pain (DNP) stubbornly and chronically affects the health and life of human beings. In the pain field, dorsal root ganglion (DRG) is generally considered as the first stage of the sensory pathway where the hyperexcitability of injured neurons is associated with different kinds of peripheral neuropathic pains. The abnormal electrophysiology is mainly due to the changed properties of voltage-gated sodium channels (VGSCs) and the increased sodium currents (I(Na)). Curcumin is an active ingredient extracted from turmeric and has been demonstrated to ameliorate T2DM and its various complications including DNP effectively. The present study demonstrates that the I(Na) of small-sized DRG neurons are significantly increased with the abnormal electrophysiological characteristics of VGSCs in type 2 diabetic neuropathic pain rats. And these abnormalities can be ameliorated efficaciously by a period of treatment with curcumin.
Animals
;
Curcumin
;
pharmacology
;
Diabetes Mellitus, Experimental
;
complications
;
Diabetes Mellitus, Type 2
;
complications
;
Diabetic Neuropathies
;
drug therapy
;
Ganglia, Spinal
;
cytology
;
drug effects
;
metabolism
;
Neuralgia
;
drug therapy
;
Neurons
;
drug effects
;
metabolism
;
Rats
;
Sodium
;
Voltage-Gated Sodium Channels
;
physiology
7.TRPV1 channel-mediated thermogenesis is a common mode for the Chinese pungent-hot or pungent-warm herbs to demonstrate their natures.
Feng SUI ; Li DAI ; Qian LI ; Hai-yu ZHOU ; Hong-dan ZHAN ; Hai-ru HUO ; Ting-liang JIANG
Acta Pharmaceutica Sinica 2015;50(7):836-841
To further uncover the scientific significance and molecular mechanism of the Chinese herbs with pungent hot or warm natures, endogenous and exogenous expression systems were established by isolation of dorsal root ganglion (DRG) neurons and transfection of HEK293 cells with TRPV1 channel gene separately. On this basis, the regulation action of capsaicin, one main ingredient from chili pepper, on TRPV1 channel was further explored by using confocal microscope. Besides, the three-sites one-unit technique and method were constructed based on the brown adipose tissue (BAT), anal and tail skin temperatures. Then the effect of capsaicin on mouse energy metabolism was evaluated. Both endogenous and exogenous TRPV1 channel could be activated and this action could be specifically blocked by the TRPV1 channel inhibitor capsazepine. Simultaneously, the mice's core body temperature and BAT temperature fall down and then go up, accompanied by the increase of temperature of the mice's tail skin. Promotion of the energy metabolism by activation of TRPV1 channel might be the common way for the pungent-hot (warm) herbs to demonstrate their natures.
Adipose Tissue, Brown
;
drug effects
;
physiology
;
Animals
;
Capsaicin
;
analogs & derivatives
;
pharmacology
;
Energy Metabolism
;
Ganglia, Spinal
;
cytology
;
HEK293 Cells
;
Humans
;
Mice
;
Neurons
;
drug effects
;
physiology
;
Plants, Medicinal
;
chemistry
;
TRPV Cation Channels
;
physiology
;
Temperature
;
Thermogenesis
8.Scorpion toxin BmK I directly activates Nav1.8 in primary sensory neurons to induce neuronal hyperexcitability in rats.
Pin YE ; Yunlu JIAO ; Zhenwei LI ; Liming HUA ; Jin FU ; Feng JIANG ; Tong LIU ; Yonghua JI
Protein & Cell 2015;6(6):443-452
Voltage-gated sodium channels (VGSCs) in primary sensory neurons play a key role in transmitting pain signals to the central nervous system. BmK I, a site-3 sodium channel-specific toxin from scorpion Buthus martensi Karsch, induces pain behaviors in rats. However, the subtypes of VGSCs targeted by BmK I were not entirely clear. We therefore investigated the effects of BmK I on the current amplitude, gating and kinetic properties of Nav1.8, which is associated with neuronal hyperexcitability in DRG neurons. It was found that BmK I dose-dependently increased Nav1.8 current in small-sized (<25 μm) acutely dissociated DRG neurons, which correlated with its inhibition on both fast and slow inactivation. Moreover, voltage-dependent activation and steady-state inactivation curves of Nav1.8 were shifted in a hyperpolarized direction. Thus, BmK I reduced the threshold of neuronal excitability and increased action potential firing in DRG neurons. In conclusion, our data clearly demonstrated that BmK I modulated Nav1.8 remarkably, suggesting BmK I as a valuable probe for studying Nav1.8. And Nav1.8 is an important target related to BmK I-evoked pain.
Aniline Compounds
;
pharmacology
;
Animals
;
Cell Size
;
Cells, Cultured
;
Electrophysiological Phenomena
;
drug effects
;
Furans
;
pharmacology
;
Ganglia, Spinal
;
cytology
;
Kinetics
;
Male
;
NAV1.8 Voltage-Gated Sodium Channel
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Scorpion Venoms
;
antagonists & inhibitors
;
pharmacology
;
Scorpions
;
Sensory Receptor Cells
;
drug effects
;
metabolism
;
physiology
;
Sodium Channel Blockers
;
pharmacology
;
Voltage-Gated Sodium Channel Agonists
;
pharmacology
9.The Role of Protease Activated Receptors and Proteases in Subtly Inflamed Diarrhea-Predominant Irritable Bowel Syndrome.
The Korean Journal of Gastroenterology 2014;63(1):59-61
No abstract available.
Animals
;
Colon/*metabolism
;
Constipation/*physiopathology
;
Diarrhea/*physiopathology
;
Female
;
Ganglia, Spinal/*cytology
;
Humans
;
Irritable Bowel Syndrome/*physiopathology
;
Male
;
Nociceptors/*physiology
;
Receptor, PAR-2/*physiology
10.Enhancement of GABA-activated currents by arginine vasopressin in rat dorsal root ganglion neurons.
Fang QIU ; Wang-Ping HU ; Zhi-Fan YANG
Acta Physiologica Sinica 2014;66(6):647-657
A growing number of studies have shown that arginine vasopressin (AVP) plays an analgesia role in the modulation of nociception. Previous studies have focused on the central mechanisms of AVP analgesia. The aim of the present study was to find out whether peripheral mechanisms are also involved. The effect of AVP on GABA-activated currents (IGABA) and GABAA receptor function in freshly isolated dorsal root ganglion (DRG) neurons of rats were studied using whole cell patch clamp technique. The result showed that, IGABA were potentiated by pre-treatment with AVP (1 × 10⁻¹⁰-1 × 10⁻⁵ mol/L) in a concentration-dependent manner. Meanwhile, the GABA concentration-response curve was shifted upwards, with an increase of (49.1 ± 4.0)% in the maximal current response but with no significant change in the EC50 values. These results indicate that the enhancing effect is non-competitive. In addition, the effects of AVP on IGABA might be voltage-independent. This potentiation of IGABA induced by AVP was almost completely blocked by the V1a receptor antagonist SR49059 (3 × 10⁻⁶ mol/L). Also it could be removed by intracellular dialysis of either GDP-β-S (5 × 10⁻⁴mol/L), a non-hydrolyzable GDP analog, or GF109203X (2 × 10⁻⁶ mol/L), a selective protein kinase C (PKC) inhibitor, with the re-patch clamp. These results suggest that AVP up-regulates the function of the GABAA receptor via G protein-coupled receptors and PKC-dependent signal pathways in rat DRG neurons, and this potentiation may underlie the analgesia induced by AVP.
Animals
;
Arginine Vasopressin
;
pharmacology
;
Ganglia, Spinal
;
cytology
;
Guanosine Diphosphate
;
analogs & derivatives
;
pharmacology
;
Indoles
;
Maleimides
;
Membrane Potentials
;
Neurons
;
drug effects
;
Patch-Clamp Techniques
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, GABA-A
;
metabolism
;
Signal Transduction
;
Thionucleotides
;
pharmacology
;
gamma-Aminobutyric Acid
;
pharmacology

Result Analysis
Print
Save
E-mail