1.Clinical value of adjuvant therapy after conversion resection for pancreatic cancer
Lingyu ZHU ; Suizhi GAO ; Xinqian WU ; Lingyun GU ; Xiaochao KANG ; Shiwei GUO ; Gang JIN
Chinese Journal of Digestive Surgery 2024;23(5):694-702
Objective:To investigate the clinical value of adjuvant therapy after conversion resection for pancreatic cancer.Methods:The retrospective cohort study was conducted. The clinicopathological data of 173 patients with pancreatic cancer who underwent surgical resection after neoadjuvant and/or induction therapy in The First Affiliated Hospital of Naval Medical University from January 2019 to December 2021 were collected. There were 107 males and 66 females, aged (59±9)years. Observation indicators: (1) comparison of clinicopathological data between patients with and without adjuvant therapy after conversion resection for pancreatic cancer; (2) analysis of influencing factors for prognosis of pancreatic cancer after conversion resection; (3) follow-up and prognosis; (4) survival benefit of adjuvant therapy in subgroup populations. Measurement data with normal distribution were represented as Mean± SD, and comparison between groups was conducted using the t test. Measurement data with skewed distribution were represented as M( Q1, Q3), and comparison between groups was conducted using the Mann-Whitney U test. Count data were expressed as absolute numbers or percentages, and comparison between groups was conducted using the chi-square test. Comparison of ordinal data was conducted using the non-parameter rank sum test. The Graphpad prism 8 software was used to draw survival curves, the Kaplan-Meier method was used to calculate survival time and survival rates, and the Log-Rank test was used for survival analysis. The COX proportional hazards regression model was used for univariate and multivariate analyses. Interaction analysis was used to determine the benefit of adjuvant therapy in subgroup populations. Results:(1) Comparison of clinicopathological data between patients with and without adjuvant therapy after conversion resection for pancreatic cancer. Of the 173 pancreatic cancer patients, there were 108 cases with adjuvant therapy after conversion resection and 65 cases without adjuvant therapy after conversion resection, respectively. Age and body mass index were (58±9)years and (23.2±2.8)kg/m 2 in patients with adjuvant therapy, versus (61±8)years and (22.2±2.8)kg/m 2 in patients without adjuvant therapy, showing significant differences in the above indicators between them ( t=-2.036, 2.200, P<0.05). (2) Analysis of influencing factors for prognosis of pancreatic cancer after conversion resection. Results of multivariate analysis showed that CA19-9 normalization, pathological N staging, degree of tumor differentiation and postoperative adjuvant therapy were independent factors influencing overall survival time in pancreatic cancer patients receiving conversion resection ( hazard ratio=1.598, 1.541, 2.004, 2.571, 95% confidence interval as 1.041-2.453, 1.021-2.327, 1.288-3.118, 1.721-3.843, P<0.05). (3) Follow-up and prognosis. All 173 patients were followed up for 24.5(5.0,52.0)months. The postoperative median overall survival time of 173 patients was 28.9(5.7,51.9)months, and the 1-, 2-, 3-year overall survival rates were 90%, 59%, 40%, respectively. Of 2019, 2020, 2021, the proportions of patients receiving adjuvant therapy after conversion resection were 62.8%(27/43), 57.7%(30/52) and 65.4%(51/78) respectively. The postoperative median overall survival time was 42.2(8.8,49.7)months in patients with adjuvant therapy after conversion resection, versus 20.4(5.7,51.9)months in patients without adjuvant therapy after conversion resection, showing a significant difference between them ( χ2=29.893, P<0.05). (4) Survival benefit of adjuvant therapy in subgroup populations. Results of interaction analysis showed that in subgroup populations with CA19-9 normalization, pathological stage N0, pathological stage N1-2, moderate to well differentiated tumors, adjuvant therapy after conversion resection can bring a better survival benefit for patients with pancreatic cancer ( adjustment hazard ratio=0.220, 0.300, 0.410, 0.340, 95% confidence interval as 0.120-0.400, 0.170-0.560, 0.240-0.690, 0.210-0.690). Conclusions:Postoperative adjuvant therapy is an independent factor influencing overall survival time in pancreatic cancer patients receiving conversion resection. Adjuvant therapy after conversion resection can bring additional survival benefits for pancreatic cancer, particularly for patients who respond favorably to neoadjuvant and/or induction therapy.
2.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
3.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
4.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
5.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
6.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.
7.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.
8.Changing resistance profiles of Staphylococcus isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yuling XIAO ; Mei KANG ; Yi XIE ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(5):570-580
Objective To investigate the changing distribution and antibiotic resistance profiles of clinical isolates of Staphylococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Staphylococcus according to the unified protocol of CHINET(China Antimicrobial Surveillance Network)using disk diffusion method and commercial automated systems.The CHINET antimicrobial resistance surveillance data from 2015 to 2021 were interpreted according to the 2021 CLSI breakpoints and analyzed using WHONET 5.6.Results During the period from 2015 to 2021,a total of 204,771 nonduplicate strains of Staphylococcus were isolated,including 136,731(66.8%)strains of Staphylococcus aureus and 68,040(33.2%)strains of coagulase-negative Staphylococcus(CNS).The proportions of S.aureus isolates and CNS isolates did not show significant change.S.aureus strains were mainly isolated from respiratory specimens(38.9±5.1)%,wound,pus and secretions(33.6±4.2)%,and blood(11.9±1.5)%.The CNS strains were predominantly isolated from blood(73.6±4.2)%,cerebrospinal fluid(12.1±2.5)%,and pleural effusion and ascites(8.4±2.1)%.S.aureus strains were mainly isolated from the patients in ICU(17.0±7.3)%,outpatient and emergency(11.6±1.7)%,and department of surgery(11.2±0.9)%,whereas CNS strains were primarily isolated from the patients in ICU(32.2±9.7)%,outpatient and emergency(12.8±4.7)%,and department of internal medicine(11.2±1.9)%.The prevalence of methicillin-resistant strains was 32.9%in S.aureus(MRSA)and 74.1%in CNS(MRCNS).Over the 7-year period,the prevalence of MRSA decreased from 42.1%to 29.2%,and the prevalence of MRCNS decreased from 82.1%to 68.2%.MRSA showed higher resistance rates to all the antimicrobial agents tested except trimethoprim-sulfamethoxazole than methicillin-susceptible S.aureus(MSSA).Over the 7-year period,MRSA strains showed decreasing resistance rates to gentamicin,rifampicin,and levofloxacin,MRCNS showed decreasing resistance rates to gentamicin,erythromycin,rifampicin,and trimethoprim-sulfamethoxazole,but increasing resistance rate to levofloxacin.No vancomycin-resistant strains were detected.The prevalence of linezolid-resistant MRCNS increased from 0.2%to 2.3%over the 7-year period.Conclusions Staphylococcus remains the major pathogen among gram-positive bacteria.MRSA and MRCNS were still the principal antibiotic-resistant gram-positive bacteria.No S.aureus isolates were found resistant to vancomycin or linezolid,but linezolid-resistant strains have been detected in MRCNS isolates,which is an issue of concern.
9.Effects of three-dimensional bioprinting antibacterial hydrogel on full-thickness skin defect wounds in rats.
Rong Hua JIN ; Zhen Zhen ZHANG ; Peng Qin XU ; Si Zhan XIA ; Ting Ting WENG ; Zhi Kang ZHU ; Xin Gang WANG ; Chuan Gang YOU ; Chun Mao HAN
Chinese Journal of Burns 2023;39(2):165-174
Objective: To explore the effects of three-dimensional (3D) bioprinting gelatin methacrylamide (GelMA) hydrogel loaded with nano silver on full-thickness skin defect wounds in rats. Methods: The experimental research method was adopted. The morphology, particle diameter, and distribution of silver nanoparticles in nano silver solution with different mass concentrations and the pore structure of silver-containing GelMA hydrogel with different final mass fractions of GelMA were observed by scanning electron microscope and the pore size was calculated. On treatment day 1, 3, 7, and 14, the concentration of nano silver released from the hydrogel containing GelMA with final mass fraction of 15% and nano silver with final mass concentration of 10 mg/L was detected by mass spectrometer. At 24 h of culture, the diameters of inhibition zone of GelMA hydrogel containing final mass concentration of 0 (no nano silver), 25, 50, and 100 mg/L nano silver against Staphylococcus aureus and Escherichia coli were detected. Fibroblasts (Fbs) and adipose stem cells (ASCs) were isolated respectively by enzymatic digestion using the discarded prepuce after circumcision from a 5-year-old healthy boy who was treated in the Department of Urology of the Second Affiliated Hospital of Zhejiang University School of Medicine in July 2020, and the discarded fat tissue after liposuction from a 23-year-old healthy woman who was treated in the Department of Plastic Surgery of the Hospital in July 2020. The Fbs were divided into blank control group (culture medium only), 2 mg/L nano sliver group, 5 mg/L nano sliver group, 10 mg/L nano sliver group, 25 mg/L nano sliver group, and 50 mg/L nano sliver group, which were added with the corresponding final mass concentrations of nano sliver solution, respectively. At 48 h of culture, the Fb proliferation viability was detected by cell counting kit 8 method. The Fbs were divided into 0 mg/L silver-containing GelMA hydrogel group, 10 mg/L silver-containing GelMA hydrogel group, 50 mg/L silver-containing GelMA hydrogel group, and 100 mg/L silver-containing GelMA hydrogel group and then were correspondingly treated. On culture day 1, 3, and 7, the Fb proliferation viability was detected as before. The ASCs were mixed into GelMA hydrogel and divided into 3D bioprinting group and non-printing group. On culture day 1, 3, and 7, the ASC proliferation viability was detected as before and cell growth was observed by live/dead cell fluorescence staining. The sample numbers in the above experiments were all 3. Four full-thickness skin defect wounds were produced on the back of 18 male Sprague-Dawley rats aged 4 to 6 weeks. The wounds were divided into hydrogel alone group, hydrogel/nano sliver group, hydrogel scaffold/nano sliver group, and hydrogel scaffold/nano sliver/ASC group, and transplanted with the corresponding scaffolds, respectively. On post injury day (PID) 4, 7, 14, and 21, the wound healing was observed and the wound healing rate was calculated (n=6). On PID 7 and 14, histopathological changes of wounds were observed by hematoxylin eosin staining (n=6). On PID 21, collagen deposition of wounds was observed by Masson staining (n=3). Data were statistically analyzed with one-way analysis of variance, analysis of variance for repeated measurement, Bonferroni correction, and independent sample t test. Results: The sliver nano particles in nano silver solution with different mass concentrations were all round, in scattered distribution and uniform in size. The silver-containing GelMA hydrogels with different final mass fractions of GelMA all showed pore structures of different sizes and interconnections. The pore size of silver-containing GelMA hydrogel with 10% final mass fraction was significantly larger than that of silver-containing GelMA hydrogels with 15% and 20% final mass fractions (with P values both below 0.05). On treatment day 1, 3, and 7, the concentration of nano silver released from silver-containing GelMA hydrogel in vitro showed a relatively flat trend. On treatment day 14, the concentration of released nano silver in vitro increased rapidly. At 24 h of culture, the diameters of inhibition zone of GelMA hydrogel containing 0, 25, 50, and 100 mg/L nano silver against Staphylococcus aureus and Escherichia coli were 0, 0, 0.7, and 2.1 mm and 0, 1.4, 3.2, and 3.3 mm, respectively. At 48 h of culture, the proliferation activity of Fbs in 2 mg/L nano silver group and 5 mg/L nano silver group was both significantly higher than that in blank control group (P<0.05), and the proliferation activity of Fbs in 10 mg/L nano silver group, 25 mg/L nano silver group, and 50 mg/L nano silver group was all significantly lower than that in blank control group (P<0.05). Compared with the that of Fbs in 0 mg/L silver-containing GelMA hydrogel group, the proliferation activity of Fbs in 50 mg/L silver-containing GelMA hydrogel group and 100 mg/L silver-containing GelMA hydrogel group was all significantly decreased on culture day 1 (P<0.05); the proliferation activity of Fbs in 50 mg/L silver-containing GelMA hydrogel group was significantly increased (P<0.05), while the proliferation activity of Fbs in 100 mg/L silver-containing GelMA hydrogel group was significantly decreased on culture day 3 (P<0.05); the proliferation activity of Fbs in 100 mg/L silver-containing GelMA hydrogel group was significantly decreased on culture day 7 (P<0.05). The proliferation activity of ASCs in 3D bioprinting group show no statistically significant differences to that in non-printing group on culture day 1 (P>0.05). The proliferation activity of ASCs in 3D bioprinting group was significantly higher than that in non-printing group on culture day 3 and 7 (with t values of 21.50 and 12.95, respectively, P<0.05). On culture day 1, the number of dead ASCs in 3D bioprinting group was slightly more than that in non-printing group. On culture day 3 and 5, the majority of ASCs in 3D bioprinting group and non-printing group were living cells. On PID 4, the wounds of rats in hydrogel alone group and hydrogel/nano sliver group had more exudation, and the wounds of rats in hydrogel scaffold/nano sliver group and hydrogel scaffold/nano sliver/ASC group were dry without obvious signs of infection. On PID 7, there was still a small amount of exudation on the wounds of rats in hydrogel alone group and hydrogel/nano sliver group, while the wounds of rats in hydrogel scaffold/nano sliver group and hydrogel scaffold/nano sliver/ASC group were dry and scabbed. On PID 14, the hydrogels on the wound surface of rats in the four groups all fell off. On PID 21, a small area of wounds remained unhealed in hydrogel alone group. On PID 4 and 7, the wound healing rates of rats in hydrogel scaffold/nano sliver/ASC group were significantly higher than those of the other three groups (P<0.05). On PID 14, the wound healing rate of rats in hydrogel scaffold/nano sliver/ASC group was significantly higher than the wound healing rates in hydrogel alone group and hydrogel/nano sliver group (all P<0.05). On PID 21, the wound healing rate of rats in hydrogel alone group was significantly lower than that in hydrogel scaffold/nano sliver/ASC group (P<0.05). On PID 7, the hydrogels on the wound surface of rats in the four groups remained in place; on PID 14, the hydrogel in hydrogel alone group was separated from the wounds of rats, while some hydrogels still existed in the new tissue of the wounds of rats in the other three groups. On PID 21, the collagen arrangement in the wounds of rats in hydrogel alone group was out of order, while the collagen arrangement in the wounds of rats in hydrogel/nano sliver group, and hydrogel scaffold/nano sliver/ASC group was relatively orderly. Conclusions: Silver-containing GelMA hydrogel has good biocompatibility and antibacterial properties. Its three-dimensional bioprinted double-layer structure can better integrate with new formed tissue in the full-thickness skin defect wounds in rats and promote wound healing.
Male
;
Rats
;
Animals
;
Humans
;
Hydrogels/pharmacology*
;
Bioprinting
;
Metal Nanoparticles
;
Rats, Sprague-Dawley
;
Silver/pharmacology*
;
Soft Tissue Injuries
;
Anti-Bacterial Agents
10.Successful Simultaneous Treatment of Benign Stricture and Colonic Neoplasm Arising from Colonic Interposition after Esophagectomy: A Case Report
Seung Hee KIM ; Jin Won KIM ; Seon-Young PARK ; Hyun-Soo KIM ; Chae June LIM ; Gang Han LEE ; Jae Woong LIM ; Young Eun SEO ; Shin Young PARK ; Yo Han LEE ; Yong-Wook JUNG ; Woo Rim KANG ; Hye-Su YOU ; Dong Hyun KIM
The Korean Journal of Gastroenterology 2023;82(3):140-144
Colonic interposition is the main procedure used in esophageal reconstruction. We report a rare case of simultaneous treatment of an anastomotic site stricture and a neoplasm in the interpositioned colon. A 69-year-old female visited our outpatient clinic with symptoms of progressive dysphagia for 1 year. At the age of 30 years, the patient underwent esophagectomy with retrosternal colonic interposition because of severe esophageal burns after chemical ingestion. Upper gastrointestinal endoscopy revealed stricture at the anastomosis site and a 10-mm flat elevated high-grade dysplasia in the interpositioned colon. First, through-the-scope balloon dilatation was performed for strictures. However, stenosis was observed during the second upper gastrointestinal endoscopy session.Therefore, a second session of through-the-scope balloon dilatation was performed, and simultaneously, endoscopic submucosal dissection was also successfully performed. After 2 months of follow-up, stenosis persisted; consequently, balloon dilatation was performed. No recurrence of neoplasm was confirmed endoscopically. Through-the-scope balloon dilatation of the stricture site and simultaneous endoscopic submucosal dissection of the neoplasm in the interpositioned colon were successfully performed.

Result Analysis
Print
Save
E-mail