1.Antioxidant and Anti-aging Activities of Silybum Marianum Protein Hydrolysate in Mice Treated with D-galactose.
Shu Yun ZHU ; Ning JIANG ; Jie TU ; Jing YANG ; Yue ZHOU
Biomedical and Environmental Sciences 2017;30(9):623-631
OBJECTIVEIn the present study, we investigated the antioxidant and anti-aging effects of Silybum marianum protein hydrolysate (SMPH) in D-galactose-treated mice.
METHODSD-galactose (500 mg/kg body weight) was intraperitoneally injected daily for 7 weeks to accelerate aging, and SMPH (400, 800, 1,200 mg/kg body weight, respectively) was simultaneously administered orally. The antioxidant and anti-aging effects of SMPH in the liver and brain were measured by biochemical assays. Transmission electron microscopy (TEM) was performed to study the ultrastructure of liver mitochondri.
RESULTSSMPH decreased triglyceride and cholesterol levels in the D-galactose-treated mice. It significantly elevated the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC), which were suppressed by D-galactose. Monoamine oxidase (MAO) and malondialdehyde (MDA) levels as well as the concentrations of caspase-3 and 8-OHdG in the liver and brain were significantly reduced by SMPH. Moreover, it increased Bcl-2 levels in the liver and brain. Furthermore, SMPH significantly attenuated D-galactose-induced liver mitochondrial dysfunction by improving the activities of Na+-K+-ATPase and Ca2+-Mg2+-ATPase as well as mitochondrial membrane potential (ΔΨm) and fluidity. TEM showed that the degree of liver mitochondrial damage was significantly decreased by SMPH.
CONCLUSIONThe results indicated that SMPH protects against D-galactose-induced accelerated aging in mice through its antioxidant and anti-aging activities.
Aging ; drug effects ; Animals ; Antioxidants ; pharmacology ; Brain ; drug effects ; Caspase 3 ; metabolism ; Galactose ; toxicity ; Gene Expression Regulation, Enzymologic ; drug effects ; Glutathione Peroxidase ; metabolism ; Male ; Malondialdehyde ; metabolism ; Maze Learning ; drug effects ; Mice ; Milk Thistle ; chemistry ; Mitochondria, Liver ; drug effects ; Oxidative Stress ; drug effects ; Plant Proteins ; chemistry ; pharmacology ; Protective Agents ; pharmacology ; Protein Hydrolysates ; chemistry ; pharmacology ; Superoxide Dismutase ; metabolism
2.Effects of recombinant human erythropoietin on brain-derived neurotrophic factor expression in different brain regions of aging rats.
Hu-Qing WANG ; Zhen GAO ; Meng-Yi CHEN ; Hai-Qin WU ; Gui-Lian ZHANG ; Shu-Qin ZHAN ; Ning BU ; Jing-Jie LIU ; Yue-Fen ZHAI
Journal of Southern Medical University 2016;37(4):551-554
OBJECTIVETo explore the effect of recombinant human erythropoietin (rhEPO) on expression of brain-derived neurotrophic factor (BDNF) in different brain regions of aging rats.
METHODSForty male SD rats were randomized equally into negative control group, D-galactose group, EPO treatment group, and positive control group. Rat models of subacute aging were established by continuous subcutaneous injection of 5% D-galactose. Immunohistochemical staining was used to analyze the variation of BDNF expressions in different brain regions of the aging rats with different treatments.
RESULTSSignificant brain region-specific differences in BDNF expression were found among the rats in different groups. Compared with those in the negative control group, the numbers of BDNF-positive cells in the hippocampal CA1 region, CA3 region, dentate gyrus (DG) and frontal cortex were all decreased obviously in D-galactose group (P<0.05) but increased in both EPO group and the positive control group (P<0.05) without significant differences between the latter two groups. In the rats in the same group, the number of BDNF-positive cells varied markedly in different brain regions (P<0.05), and the expression level of BDNF was the highest in the frontal cortex followed by the hippocampal CA3 region and the dentate gyrus, and was the lowest in the hippocampal CA1 region.
CONCLUSIONTreatment with rhEPO enhances the expression of BDNF in rat neural cells, suggesting that rhEPO may protect the nervous system from aging by regulating the BDNF pathway.
Aging ; Animals ; Brain-Derived Neurotrophic Factor ; metabolism ; CA1 Region, Hippocampal ; metabolism ; CA3 Region, Hippocampal ; metabolism ; Dentate Gyrus ; metabolism ; Erythropoietin ; pharmacology ; Frontal Lobe ; metabolism ; Galactose ; Humans ; Male ; Neurons ; drug effects ; metabolism ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Recombinant Proteins ; pharmacology
3.Exogenous hydrogen sulfide reduces vascular aging in D-galactose-induced subacute aging rats.
Wei-Li QIAO ; Department of PATHOLOGY ; Wen-Xue YANG ; Lei LIU ; Yue SHI ; Jie CUI ; Hong LIU ; Chang-Dong YAN
Acta Physiologica Sinica 2014;66(3):276-282
The present study was aimed to observe the protective effect of exogenous hydrogen sulfide (H₂S) on vascular structural and functional changes of aorta in D-galactose-induced subacute aging rats. Adult male SD rats were randomly divided to five groups: the vehicle group, the D-galactose (D-gal) group, and the three NaHS groups treated with low (1 μmol·kg⁻¹·d⁻¹), middle (10 μmol·kg⁻¹·d⁻¹) or high (100 μmol·kg⁻¹·d⁻¹) dose of NaHS respectively. The D-gal group rats were given subcutaneously injection of 125 mg/kg D-gal per day for eight weeks to induce subacute aging model. In the NaHS group, D-gal was administered as above but with NaHS intraperitoneally injected at a dosage of 1, 10, 100 μmol·kg⁻¹·d⁻¹ respectively. Equivalent volumes of saline were administered per day for eight weeks in vehicle group. Morphological changes of aorta were observed by HE and Masson staining. The level of H₂S in serum, the activity of superoxide dismutase (SOD) and the content of malondialdehyde (MDA), as well as anti-superoxide anions in vascular tissue were determined by spectrophotometry. Angiotensin II (AngII) levels in plasma were measured using competitive enzyme immunoassay. The expression of angiotensin II type 1 receptor (AT1R) in aorta was determined by Western blot. The results showed that the aging aortic morphologic changes in model rats were ameliorated in NaHS groups. Decreased vascular endothelial exfoliative cells and vascular smooth muscle cell (SMC) proliferation were shown in NaHS groups by HE staining. Masson staining analysis showed reduced relative contents of collagen fibers (P < 0.05) and SMC (P < 0.05) in NaHS groups. Compared to vehicle group, serum concentration of H₂S in D-gal group was decreased, while it was increased in NaHS groups after treatment with NaHS (P < 0.05). In the D-gal group, the concentration of AngII in plasma was significantly increased compared with that in vehicle group, while it was decreased in NaHS groups (P < 0.05). Moreover, levels of vascular tissue anti-superoxide anion and the activity of SOD were obviously higher, MDA was significantly lower in all NaHS treated groups than those in the D-gal group respectively (P < 0.05). Western blot analysis showed that the expression of AT1R was increased in D-gal group compared with that in vehicle group, while it was decreased after treatment with NaHS compared with that in D-gal group (P < 0.05). These results suggest that exogenous H₂S can ameliorate the age-related changes of aortic morphology, decrease the concentration of AngII in plasma, down-regulate the expression of AT1R in vascular tissue, and mitigate the level of oxidative stress. These changes delay the vascular aging in aging rats ultimately.
Aging
;
drug effects
;
Angiotensin II
;
metabolism
;
Animals
;
Aorta
;
pathology
;
Cell Proliferation
;
Endothelial Cells
;
metabolism
;
Galactose
;
adverse effects
;
Hydrogen Sulfide
;
pharmacology
;
Male
;
Malondialdehyde
;
metabolism
;
Myocytes, Smooth Muscle
;
metabolism
;
Oxidative Stress
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, Angiotensin, Type 2
;
metabolism
;
Sulfides
;
pharmacology
;
Superoxide Dismutase
;
metabolism
4.Effect of FGF-21 on learning and memory ability and antioxidant capacity in brain tissue of D-galactose-induced aging mice.
Yin-Hang YU ; Gui-Ping REN ; Yao-Nan LIU ; Su-Su QU ; Fu-Liang BAI ; Tong ZHANG ; Wen-Fei WANG ; Gui-You TIAN ; Xian-Long YE ; De-Shan LI
Acta Pharmaceutica Sinica 2014;49(7):1000-1006
This study aims to investigate the effects of fibroblast growth factor 21 (FGF-21) on learning and memory abilities and antioxidant capacity of D-galactose-induced aging mice. Kunming mice (37.1 +/- 0.62) g were randomly divided into normal control group, model group and FGF-21 high, medium and low dose groups (n = 8). Each group was injected in cervical part subcutaneously with D-galactose 180 mg x kg(-1) x d(-1) once a day for 8 weeks. At the same time, FGF-21-treated mice were administered with FGF-21 by giving subcutaneous injection in cervical part at the daily doses of 5, 2 and 1 mg x kg(-1) x d(-1). The normal control group was given with normal saline by subcutaneous injection in cervical part. At seventh week of the experiment, the learning and memory abilities of mice were determined by water maze and jumping stand tests. At the end of the experiment, the mice were sacrificed and the cells damage of hippocampus was observed by HE staining in each group. Reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and total antioxidant capacity (T-AOC) in the brain of mice were determined. The results showed that different doses of FGF-21 could reduce the time reaching the end (P < 0.01 or P < 0.05) and the number of touching blind side (P < 0.01 or P < 0.05) in the water maze comparing with the model group. It could also prolong the latency time (P < 0.05) and decrease the number of errors (P < 0.01 or P < 0.05) in the step down test. The result of HE staining showed that FGF-21 could significantly reduce brain cell damage in the hippocampus. The ROS and MDA levels of three different doses FGF-21 treatment group reduced significantly than that of the model group [(5.58 +/- 1.07), (7.78 +/- 1.92), (9.03 +/- 1.77) vs (12.75 +/- 2.02) pmol (DCF) x min(-1) x mg(-1), P < 0.01 or P < 0.05], [(2.92 +/- 0.71), (4.21 +/- 0.81), (4.41 +/- 0.97) vs (5.62 +/- 0.63) nmol x mg(-1) (protein), P < 0.01]. Comparing with the model group, the activities of SOD, GPx, CAT and T-AOC of the three different doses FGF-21 treatment groups were also improved in a dose-dependent manner. This study demonstrates that FGF-21 can ameliorate learning and memory abilities of D-galactose induced aging mice, improve the antioxidant abilities in brain tissue and delay brain aging. This finding provides a theoretical support for clinical application of FGF-21 as a novel therapeutics for preventing aging.
Aging
;
drug effects
;
Animals
;
Antioxidants
;
metabolism
;
Brain
;
drug effects
;
Catalase
;
metabolism
;
Fibroblast Growth Factors
;
pharmacology
;
Galactose
;
Glutathione Peroxidase
;
metabolism
;
Hippocampus
;
drug effects
;
Malondialdehyde
;
metabolism
;
Maze Learning
;
drug effects
;
Memory
;
drug effects
;
Mice
;
Superoxide Dismutase
;
metabolism
5.The effect of Wu-He Dipsacus asper on mice-aging model induced by D-galactose.
Guang-Jie ZHAN ; Nian-An YANG ; Ben-Jian XIAO
Chinese Journal of Applied Physiology 2014;30(2):174-177
OBJECTIVETo study the effect of Wu-He Dipsacus asper (WHDA), Traditional Chinese Medicine, injection on mice-aging model induced by D-galactose.
METHODSForty-eight Kunming mice (24 male and 24 female) were randomly divided into control group, model group, positive control group, 7.2 g/kg WHDA group, 3.6 g/kg WHDA group and 1.8 g/kg WHDA group with eight in each group. The model was induced through injecting D-galactose into peritoneal cavity and Morris water maze was used to detect the learning and cognitive ability of mice. The skin hydroxyproline, brain tissue malondialdehyde (MDA), lipofuscin (LP), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels of mice were detected; the IL-2 and IL-6 levels in serum of mice were detected by using double antibody sandwich ELISA method.
RESULTSEach WHDA group was significantly reduced in latency period compared with the model group during Morris water maze test (P < 0.05) and the number of mice in model group through the platform was less than other mice in each group (P < 0.05). The levels of MAD and LP of the control group and each WHDA group were less than model group in the detection of heart, brain tissue oxidation index (SOD, MAD, LP and GSH-Px, P < 0.05). The activity of SOD and GSH-Px in the control group and each WHDA group was significantly higher than that in the model group (P < 0.05). The skin hydroxyproline content of mice which had been injected with D-galactose was significantly lower than that in the control group (P < 0.05) and the skin hydroxyproline content of mice of WHDA group was significantly higher than that in the model group (P < 0.05). The IL-2, IL-6 levels in serum of mice in WHDA group were significantly higher than those in the control group and the model group (P < 0.05) and the IL-2, IL-6 levels in serum of mice in the model group were lower than those in the control group (P < 0.05).
CONCLUSIONThe effective constituents of WHDA have a variety of biological activity which can have a good effect on anti-aging by different ways, improving learning and memory function, eliminating free radicals antioxidant, and enhancing the body immunity and other aspects.
Aging ; drug effects ; physiology ; Animals ; Brain ; drug effects ; metabolism ; Dipsacaceae ; chemistry ; Drugs, Chinese Herbal ; pharmacology ; Female ; Galactose ; toxicity ; Glutathione Peroxidase ; metabolism ; Hydroxyproline ; metabolism ; Interleukins ; blood ; Learning ; drug effects ; Lipofuscin ; metabolism ; Male ; Malondialdehyde ; metabolism ; Memory ; drug effects ; Mice ; Skin ; drug effects ; metabolism ; Superoxide Dismutase ; metabolism
6.The initial study on mechanism in postpone skeletal muscle aging process of D-galactose rats by movement training and soy polypeptide supplement.
Chinese Journal of Applied Physiology 2014;30(2):142-146
OBJECTIVETo observe the effect of the postpone in skeletal muscle aging process of D-galactose rats by weight training and soy polypeptide supplement in 6 weeks, and discuss the initial mechanism.
METHODSixty male SD rats (three month old)were randomly assigned: 6 week control (C6,) and 6 week model (M6) 6 for each group, 12 week model (M12), big load (B12), small load (S12), peptide (P12), peptide + big load (PB12) and peptide + small load group (PS12) 8 for each group, eight fourteen month rats were taken in the natural aging group. The rats were killed by the end of 6th week and 12th week, tested the indicators.
RESULTCompare with group C6, the indicators in group M6 showed aging in different levels; Compare with group M12, weight training or soy polypeptide supplement in all intervention groups could increase the content of skeletal muscle superoxide dismutase (SOD), SOD/MDA, the serum growth hormone(GH), insulin-like growth factor-1 (IGF-I)and skeletal muscle IGF-I mRNA, decreased the malondialdehyde (MDA) content of skeletal muscle, and they had notable interaction.
CONCLUSIONRat skeletal muscle aging model can be copied successfully by D-galactose hypodermic, and go on with 6-week weight training or soy polypeptide supplement, they can postpone the skeletal muscle aging process of D-galactose rats, and the two interference way united can have more obvious effect. Its preliminary mechanism may be related to the reduction of skeletal muscle oxidative stress and lipid peroxidation, the correction of hormones and related factors metabolic disorders, the elevation of skeletal muscle IGF-I mRNA expression and so on.
Aging ; physiology ; Animals ; Galactose ; Growth Hormone ; blood ; Insulin-Like Growth Factor I ; metabolism ; Male ; Malondialdehyde ; metabolism ; Muscle, Skeletal ; drug effects ; physiology ; Physical Conditioning, Animal ; physiology ; Rats ; Rats, Sprague-Dawley ; Soybean Proteins ; pharmacology ; Soybeans ; chemistry ; Superoxide Dismutase ; metabolism
7.Effect of kinetin on immunity and splenic lymphocyte proliferation in vitro in D-galactose-induced aging rats.
Meng-Yun LI ; Wu-Qing OUYANG ; Xiao-Li WU ; Yin ZHENG ; Rui GAO ; Jia-Xin TANG
Acta Physiologica Sinica 2014;66(5):605-611
The purpose of this paper is to study the effect of kinetin (Kn) on immunity and splenic lymphocyte proliferation in vitro of aging rats induced by D-galactose (D-gal). Fifty SD rats were randomly divided into five groups: control group, aging model group, Kn low dose group, Kn middle dose group and Kn high dose group. The aging model group was proposed by napes subcutaneous injection of D-gal (125 mg/kg) for 45 d, and anti-aging groups were intragastrically administered with 5, 10, 20 mg/kg of Kn respectively from day 11. IgG, IgA, IgM contents of serum, the apoptosis percentage, stimulation index (SI) and proliferation index (PI) of splenic lymphocyte in vitro were evaluated. The results showed that the apoptosis percentage of splenic lymphocyte in aging model rats was higher, the serum IgG, IgA and IgM contents, SI and PI were lower than control group. Kn significantly decreased the apoptosis percentage of splenic lymphocyte, while increased the serum IgG, IgA and IgM contents, SI and PI in aging model group. These results suggest that Kn could inhibit the apoptosis, while promote the proliferation of splenic lymphocyte, and then effectively enhance the immune power of the aging rats and slow down the aging process.
Aging
;
drug effects
;
immunology
;
Animals
;
Antibodies
;
blood
;
Apoptosis
;
Cell Proliferation
;
drug effects
;
Galactose
;
adverse effects
;
Kinetin
;
pharmacology
;
Lymphocytes
;
cytology
;
Rats
;
Rats, Sprague-Dawley
;
Spleen
;
cytology
8.Kinetin inhibits apoptosis of aging spleen cells induced by D-galactose in rats.
Mengyun LI ; Wuqing OUYANG ; Xiaoli WU ; Yin ZHENG ; Yunpeng WEI ; Lei AN
Journal of Veterinary Science 2014;15(3):353-359
Kinetin (Kn) is a cytokinin growth factor that exerts several anti-aging and antioxidant effects on cells and organs. To investigate the mechanism underlying apoptotic events in aging cells induced by D-galactose (D-gal), we examined the effect of Kn delivered via nuchal subcutaneous injection on D-gal-induced aging and apoptosis in rats. Our results showed that interleukin (IL)-2 levels and mitochondrial membrane potential (DeltaPsim) were decreased by Kn in aging rats while IL-6 production and apoptosis increased. In addition, the expression of anti-apoptotic Bcl-2 was low while that of Bax was high in the aging group. After treated with Kn, compared with aging group, there showed obvious difference in Kn group with elevated IL-2, proliferation index, Bcl-2, DeltaPsim and decreased IL-6 and Bax in splenic lymphocyte. Based on these results, we concluded that Kn can effectively protect the rat spleen from aging, apoptosis, and atrophy.
Aging/drug effects/physiology
;
Animals
;
Apoptosis/drug effects/*physiology
;
Female
;
Galactose/*pharmacology
;
Interleukin-6/physiology
;
Interleukins/physiology
;
Kinetin/pharmacology/*physiology
;
Male
;
Membrane Potential, Mitochondrial/drug effects/physiology
;
Rats
;
Spleen/*cytology/drug effects/physiology
9.Effect of kinetin on ovary and uterus in D-galactose-induced female mouse model of aging.
Jiang-Hong SUN ; Yu-Mei LIU ; Tong CAO ; Wu-Qing OUYANG
Acta Physiologica Sinica 2013;65(4):389-394
The present study was to investigate the effect of kinetin on ovary and uterus of D-galactose-induced female mouse model of aging. Aging female mice model caused by D-galactose were used as model group, the aging model mice intragastrically administered with kinetin solution (daily 25 mg/kg or 50 mg/kg) were used as kinetin groups, and the mice with solvent as normal group (n = 20). To detect the effects of kinetin, estrous cycle, estradiol content, ovarian and uterine wet weight and organ index, SOD and GSH-Px activities, MDA and total protein contents, as well as the reserve function of ovaries were examined. The results showed that, kinetin-induced changes in two kinetin groups were observed, compared with the model group: (1) the estrous cycle was shortened; (2) serum estradiol content was significantly increased; (3) the wet weights of the ovary and uterus were increased significantly; (4) SOD and GSH-Px activities of ovary and uterus were significantly higher; (5) the MDA contents of the ovary and uterus were reduced significantly; (6) total protein contents of the ovary and uterus were increased significantly; (7) the numbers of mature oocytes in fallopian tubes were increased significantly. The results show that kinetin can protect ovary and uterus against oxidative damage, prevent low estrogen secretion caused by ovarian oxidative damage, shorten the estrous cycle in mice, and eventually maintain ovarian and uterine vitalities.
Aging
;
Animals
;
Estradiol
;
metabolism
;
Estrous Cycle
;
drug effects
;
Female
;
Galactose
;
Kinetin
;
pharmacology
;
Mice
;
Organ Size
;
Ovary
;
drug effects
;
Uterus
;
drug effects
10.Effects of total paeony glucosides on mRNA expressions of Toll receptors and interleukin-33 in the brain tissue of D-galactose induced aging rats: an experimental research.
Hai-Yan ZHANG ; Zhong-Jin LIU ; Zhi-Wei CHEN
Chinese Journal of Integrated Traditional and Western Medicine 2013;33(6):830-833
OBJECTIVETo investigate effects of total paeony glucosides (TPGs) on the expressions of Toll receptors (TLR4) and interleukin-33 (IL-33) in the brain tissue of D-galactose-induced aging rats. METHODS; Fifty SD rats were randomly divided into 5 groups, i.e., the blank control group, the model group, the high dose TPG group, the middle dose TPG group, and the low dose TPG group, 10 in each group. Equal volume of normal saline was subcutaneously injected to rats in the blank control group, while 10% D-galactose was subcutaneously injected to rats in the rest groups at 0.125 mL/g, once a day for 8 successive weeks to induce the aging rat model. TPG was administered at 300 mg/kg, 150 mg/kg, and 75 mg/kg to rats in the high, middle, and low dose TPG groups while injecting D-galactose from the 5th week of model preparation, once daily for 4 successive weeks. Equal volume of normal saline was administered to rats in the blank control group and the model group, once daily. The capability for learning and memory was detected using Morris water. The mRNA expressions of TLR4 and IL-33 in the brain tissue were detected using ELISA.
RESULTSCompared with the blank control group, the capability for learning and memory decreased in the model group with statistical difference (P < 0.05). Compared with the model group, the capability for learning and memory was obviously improved in all the medicated groups in a dose-dependent manner, showing statistical difference (P < 0.05). Compared with the blank control group, mRNA expressions of TLR4 and IL-33 in the brain tissue obviously increased after medication in the model group, showing statistical difference (P < 0.05). Compared with the model group, mRNA expressions of TLR4 and IL-33 in the brain tissue obviously decreased after medication in all the medicated groups in a dose-dependent manner, showing statistical difference (P < 0.05).
CONCLUSIONTPGs improved D-galactose induced aging rats' capability for learning and memory through regulating changes of TLR4 and IL-33 expressions.
Aging ; drug effects ; Animals ; Brain ; drug effects ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Galactose ; adverse effects ; Interleukins ; metabolism ; Learning ; drug effects ; Male ; Memory ; drug effects ; Paeonia ; chemistry ; RNA, Messenger ; genetics ; Rats ; Rats, Sprague-Dawley ; Toll-Like Receptor 4 ; metabolism

Result Analysis
Print
Save
E-mail