1.Effects of electroacupuncture on gait and proliferation and differentiation of muscle satellite cell in rats with acute blunt trauma of gastrocnemius muscle.
Yu-Ting HUANG ; Jia-Yan CHEN ; Lin-Yao ZHENG ; Yue-Yue LIU ; Xiu-Bing TONG ; Si-Yang XIAO ; Yu KAN ; Yan-Ping FANG ; Xiang-Hong JING ; Jun LIAO
Chinese Acupuncture & Moxibustion 2023;43(9):982-989
OBJECTIVE:
To observe the effects of electroacupuncture on threshold of pain, gait, proliferation and differentiation of muscle satellite cell in rats with acute blunt trauma of gastrocnemius muscle, and to explore the possible mechanism of electroacupuncture in promoting the repair of acute injury of skeletal muscle.
METHODS:
A total of 48 SD rats were randomly divided into a blank group (6 rats), a model group (24 rats) and an electroacupuncture group (18 rats). In the model group and the electroacupuncture group, the model of acute blunt trauma of gastrocnemius muscle was established by self-made impactor. In the electroacupuncture group, electroacupuncture was applied at "Chengshan" (BL 57) and "Yanglingquan" (GB 34) on the right side, with disperse-dense wave, in frequency of 2 Hz/100 Hz, once a day, 30 min each time. Electroacupuncture intervention was performed for 3, 7 and 14 days according to the sampling time. On the 1st, 3rd, 7th and 14th days after modeling, the mechanical withdrawal pain threshold of hindfoot was detected by Von Frey method; the standing time and the maximum contact area of the right hindfoot were recorded by Cat Walk XTTM animal gait analysis instrument; the morphology of the right gastrocnemius muscle and the number of inflammatory cells were observed by HE staining; the positive expression of paired box gene 7 (Pax7) and myogenic differentiation (MyoD) of the right gastrocnemius muscle was detected by immunofluorescence.
RESULTS:
After modeling, the muscle fiber rupture and massive infiltration of red blood cells and inflammatory cells were observed in the right gastrocnemius muscle; after electroacupuncture intervention, the morphology of muscle fiber was intact and the infiltration of inflammatory cells was improved. Compared with the blank group, in the model group, the differences of mechanical withdrawal pain threshold between the left and right foot were increased (P<0.05), the standing time was shortened and the maximum contact area of the right hindfoot was decreased (P<0.05), the number of inflammatory cells and the positive expression of Pax7 and MyoD of the right gastrocnemius muscle were increased (P<0.05) on the 1st, 3rd, 7th and 14th days after modeling. Compared with the model group, in the electroacupuncture group, the differences of mechanical withdrawal pain threshold were decreased (P<0.05), the standing time was prolonged (P<0.05), the number of inflammatory cells of right gastrocnemius muscle was decreased (P<0.05) on the 7th and 14th days after modeling; the maximum contact area of the right hindfoot was increased (P<0.05), the positive expression of MyoD of the right gastrocnemius muscle was increased (P<0.05) on the 3rd, 7th and 14th days after modeling; the positive expression of Pax7 of the right gastrocnemius muscle was increased (P<0.05) on the 3rd day after modeling.
CONCLUSION
Electroacupuncture can effectively improve the pain threshold and gait in rats with acute blunt trauma of gastrocnemius muscle, and promote the repair of skeletal muscle injury, the mechanism may be related to the up-regulation of Pax7 and MyoD, so as to promoting the proliferation and differentiation of muscle satellite cell.
Animals
;
Rats
;
Rats, Sprague-Dawley
;
Satellite Cells, Skeletal Muscle
;
Electroacupuncture
;
Muscle, Skeletal
;
Gait
;
Wounds, Nonpenetrating
;
Pain
;
Cell Differentiation
;
Cell Proliferation
2.Analysis of muscle synergy and muscle functional network at different walking speeds based on surface electromyographic signal.
Caihong CUI ; Huacong MIAO ; Tie LIANG ; Xiuling LIU ; Xiaoguang LIU
Journal of Biomedical Engineering 2023;40(5):938-944
An in-depth understanding of the mechanism of lower extremity muscle coordination during walking is the key to improving the efficacy of gait rehabilitation in patients with neuromuscular dysfunction. This paper investigates the effect of changes in walking speed on lower extremity muscle synergy patterns and muscle functional networks. Eight healthy subjects were recruited to perform walking tasks on a treadmill at three different speeds, and the surface electromyographic signals (sEMG) of eight muscles of the right lower limb were collected synchronously. The non-negative matrix factorization (NNMF) method was used to extract muscle synergy patterns, the mutual information (MI) method was used to construct the alpha frequency band (8-13 Hz), beta frequency band (14-30 Hz) and gamma frequency band (31-60 Hz) muscle functional network, and complex network analysis methods were introduced to quantify the differences between different networks. Muscle synergy analysis extracted 5 muscle synergy patterns, and changes in walking speed did not change the number of muscle synergy, but resulted in changes in muscle weights. Muscle network analysis found that at the same speed, high-frequency bands have lower global efficiency and clustering coefficients. As walking speed increased, the strength of connections between local muscles also increased. The results show that there are different muscle synergy patterns and muscle function networks in different walking speeds. This study provides a new perspective for exploring the mechanism of muscle coordination at different walking speeds, and is expected to provide theoretical support for the evaluation of gait function in patients with neuromuscular dysfunction.
Humans
;
Walking Speed
;
Muscle, Skeletal/physiology*
;
Electromyography
;
Gait/physiology*
;
Walking/physiology*
3.Design and analysis of shoulder type exoskeleton stretcher for individual soldier.
Yunxiao MAO ; Haipo CUI ; Zhan ZHAO ; Xudong GUO ; Xin ZHANG ; Qian MA
Journal of Biomedical Engineering 2023;40(6):1200-1208
For the transportation process of rescuing wounded personnel on naval vessels, a new type of shoulder type exoskeleton stretcher for individual soldier was designed in this paper. The three-dimensional model of the shoulder type exoskeleton stretcher for individual soldier was constructed using three dimensional modeling software. Finite element analysis technique was employed to conduct statics simulation, modal analysis, and transient dynamics analysis on the designed exoskeleton stretcher. The results show that the maximum stress of the exoskeleton stretcher for walking on flat ground is 265.55 MPa, which is lower than the allowable strength of the fabrication material. Furthermore, the overall deformation of the structure is small. Modal analysis reveals that the natural frequency range of the exoskeleton stretcher under different gait conditions is 1.96 Hz to 28.70 Hz, which differs significantly from the swing frequency of 1 Hz during walking. This indicates that the designed structure can effectively avoid resonance. The transient dynamics analysis results show that the maximum deformation and stress of exoskeleton stretcher remain within the safety range, which meets the expected performance requirements. In summary, the shoulder type exoskeleton stretcher for individual soldier designed in this study can solve the problem of requiring more than 2 people to carry for the existing stretcher, especially suitable for narrow spaces of naval vessels. The research results of this paper can provide a new solution for the rescue of wounded personnel on naval vessels.
Humans
;
Stretchers
;
Military Personnel
;
Shoulder
;
Exoskeleton Device
;
Walking
;
Gait
;
Biomechanical Phenomena
4.Research on the Progress of Applying Virtual Reality Technology in Preventing Falls in the Elderly.
Qian XIAO ; Xiulin WEN ; Xiaohong HU ; Mei HAN ; Yanchao CUI ; Jingrong WANG ; Liqun LUO
Chinese Journal of Medical Instrumentation 2023;47(5):539-544
The primary cause of injury and death in the elderly has been reflected in fall the elderly, so the application of reasonable and effective prevention strategies has great significance in reducing the risk of fall in the elderly. The research progress of virtual reality technology applied in preventing fall in the elderly at home and abroad over the years was systematically reviewed in this study. The mechanism of the technology in preventing fall in the elderly was mainly elaborated from five aspects of improving balance ability, gait disturbance, cognitive impairment, muscle strength and the fear psychology of falling. The purpose of this thesis is to broaden the research ideas of medical personnel on the prevention of fall of the elderly, provide more effective clinical practice plans, reduce the occurrence of fall, and guarantee the safety of the elderly.
Aged
;
Humans
;
Gait
;
Muscle Strength
;
Technology
;
Virtual Reality
5.Structure Design of Hip Joint Parallel Rehabilitation Exoskeleton.
Yajun HUANG ; Huaixian LI ; Yimin GAO ; Lei YANG
Chinese Journal of Medical Instrumentation 2023;47(6):612-616
At present, most of the research on hip exoskeleton robots adopts the method of decoupling analysis of hip joint motion, decoupling the ball pair motion of hip joint into rotational motion on sagittal plane, coronal plane and cross section, and designing it into series mechanism. Aiming at the problems of error accumulation and man-machine coupling in series mechanism, a parallel hip rehabilitation exoskeleton structure is proposed based on the bionic analysis of human hip joint. The structure model is established and the kinematics analysis is carried out. Through the OpenSim software, the curve of hip flexion and extension, adduction and abduction angle in a gait cycle is obtained. The inverse solution of the structure is obtained by the D-H coordinate system method. The gait data points are selected and compared with the inverse solution obtained by ADAMS software simulation. The results show that the inverse solution expression is correct. The parallel hip exoskeleton structure can meet the requirements of the rotation angle of the hip joint of the human body, and can basically achieve the movement of the hip joint, which is helpful to improve the human-computer interaction performance of the exoskeleton.
Humans
;
Exoskeleton Device
;
Hip Joint
;
Gait
;
Biomechanical Phenomena
;
Computer Simulation
6.Study on the correlation between early three-dimensional gait analysis and clinical efficacy after robot-assisted total knee arthroplasty.
Rui HE ; Ran XIONG ; Mao-Lin SUN ; Jun-Jun YANG ; Hao CHEN ; Peng-Fei YANG ; Liu YANG
Chinese Journal of Traumatology 2023;26(2):83-93
PURPOSE:
Robot-assisted technology is a forefront of surgical innovation that improves the accuracy of total knee arthroplasty (TKA). But whether the accuracy of surgery can improve the clinical efficacy still needs further research. The purpose of this study is to perform three-dimensional (3D) analysis in the early postoperative period of patients who received robot-assisted total knee arthroplasty (RATKA), and to study the trend of changes in gait parameters after RATKA and the correlation with the early clinical efficacy.
METHODS:
Patients who received RATKA in the Center of Joint Surgery, the First Hospital Affiliated to Army Military Medical University from October 2020 to January 2021 were included. The imaging parameters, i.e., hip-knee-ankle angle, lateral distal femoral angle, medial proximal tibial angle, posterior condylar angle were measured 3 months post-TKA. The 3D gait analysis and clinical efficacy by Western Ontario Mac Master University Index (WOMAC) score were performed pre-TKA, 3 and 6 months post-TKA. The differences in spatiotemporal parameters of gait, kinetic parameters, and kinematic parameters of the operated limb and the contralateral limb were compared. The correlation between gait parameters and WOMAC scores was analyzed. Paired sample t-test and Wilcoxon rank-sum test were used to analyze the difference between groups, and Spearman correlation coefficient was used to analyze the correlation.
RESULTS:
There were 31 patients included in this study, and the imaging indexes showed that all of them returned to normal post-TKA. The WOMAC score at 3 months post-TKA was significantly lower than that pre-TKA, and there was no significant difference between at 3 and 6 months. The 3D gait analysis results showed that the double support time of the operated limb reduced at 3 and 6 months (all p < 0.05), the maximum extension and maximum external rotation of the knee joint increased at stance phase, and the maximum flexion angle, the range of motion and the maximum external rotation increased at swing phase. Compared with the preoperative data, there were significant improvements (all p < 0.05). Compared with the contralateral knee joint, the maximum external rotation of the knee joint at swing phase was smaller than that of the contralateral side, and the maximum flexion and extension moment was greater than that of the contralateral knee. The maximum external rotation moment of the joint was greater than that of the contralateral knee joint (p < 0.05). There was a negative correlation between the single support time pre-TKA and the WOMAC score at 3 months (p = 0.017), and the single support time at 3 months was negatively correlated with the WOMAC score at 6 months (p = 0.043). The cadence at 6 months was negatively correlated with the WOMAC score at 6 months (p = 0.031). The maximum knee extension at stance phase at 6 months was negatively correlated with the WOMAC score at 6 month (p = 0.048). The maximum external rotation at stance phase at 6 months was negatively correlated with the WOMAC score at 6 months (p = 0.024).
CONCLUSION
The 3D gait analysis of RATKA patients is more sensitive than WOMAC score in evaluating the clinical efficacy. Trend of changes in gait parameters shows that the knee joint support, flexion and extension function, range of motion, external rotation and varus deformity moment of the patient were significantly improved at 3 months after surgery, and continued to 6 months after surgery. Compared with the contralateral knee, the gait parameters of the operated limb still has significant gaps in functionality, such as the external rotation and flexion and extension. The single support time, cadence, knee extension, and knee external rotation of the operated limb have a greater correlation with the postoperative WOMAC score. Postoperative rehabilitation exercises should be emphasized, which is of great value for improving the early efficacy of RATKA.
Humans
;
Arthroplasty, Replacement, Knee
;
Gait Analysis
;
Robotics
;
Osteoarthritis, Knee/surgery*
;
Knee Joint/surgery*
;
Treatment Outcome
;
Range of Motion, Articular
;
Biomechanical Phenomena
7.A gait signal acquisition and parameter characterization method based on foot pressure detection combined with Azure Kinect system.
Guofeng XU ; Kai CHEN ; Ying YANG
Journal of Biomedical Engineering 2023;40(2):350-357
The gait acquisition system can be used for gait analysis. The traditional wearable gait acquisition system will lead to large errors in gait parameters due to different wearing positions of sensors. The gait acquisition system based on marker method is expensive and needs to be used by combining with the force measurement system under the guidance of rehabilitation doctors. Due to the complex operation, it is inconvenient for clinical application. In this paper, a gait signal acquisition system that combines foot pressure detection and Azure Kinect system is designed. Fifteen subjects are organized to participate in gait test, and relevant data are collected. The calculation method of gait spatiotemporal parameters and joint angle parameters is proposed, and the consistency analysis and error analysis of the gait parameters of proposed system and camera marking method are carried out. The results show that the parameters obtained by the two systems have good consistency (Pearson correlation coefficient r ≥ 0.9, P < 0.05) and have small error (root mean square error of gait parameters is less than 0.1, root mean square error of joint angle parameters is less than 6). In conclusion, the gait acquisition system and its parameter extraction method proposed in this paper can provide reliable data acquisition results as a theoretical basis for gait feature analysis in clinical medicine.
Humans
;
Biomechanical Phenomena
;
Gait
;
Lower Extremity
;
Foot
;
Gait Analysis
;
Reproducibility of Results
8.A two-dimensional video based quantification method and clinical application research of motion disorders.
Yubo SUN ; Peipei LIU ; Yuchen YANG ; Yang YU ; Huan YU ; Xiaoyi SUN ; Jialing WU ; Jianda HAN ; Ningbo YU
Journal of Biomedical Engineering 2023;40(3):499-507
The increasing prevalence of the aging population, and inadequate and uneven distribution of medical resources, have led to a growing demand for telemedicine services. Gait disturbance is a primary symptom of neurological disorders such as Parkinson's disease (PD). This study proposed a novel approach for the quantitative assessment and analysis of gait disturbance from two-dimensional (2D) videos captured using smartphones. The approach used a convolutional pose machine to extract human body joints and a gait phase segmentation algorithm based on node motion characteristics to identify the gait phase. Moreover, it extracted features of the upper and lower limbs. A height ratio-based spatial feature extraction method was proposed that effectively captures spatial information. The proposed method underwent validation via error analysis, correction compensation, and accuracy verification using the motion capture system. Specifically, the proposed method achieved an extracted step length error of less than 3 cm. The proposed method underwent clinical validation, recruiting 64 patients with Parkinson's disease and 46 healthy controls of the same age group. Various gait indicators were statistically analyzed using three classic classification methods, with the random forest method achieving a classification accuracy of 91%. This method provides an objective, convenient, and intelligent solution for telemedicine focused on movement disorders in neurological diseases.
Humans
;
Aged
;
Parkinson Disease/diagnosis*
;
Aging
;
Algorithms
;
Gait
;
Lower Extremity
9.Musculoskeletal multibody dynamics investigation for the different medial-lateral installation position of the femoral component in unicompartmental knee arthroplasty.
Jiaxuan REN ; Zhenxian CHEN ; Jing ZHANG ; Yongchang GAO ; Feng QIAO ; Zhongmin JIN
Journal of Biomedical Engineering 2023;40(3):508-514
The surgical installation accuracy of the components in unicompartmental knee arthroplasty (UKA) is an important factor affecting the joint function and the implant life. Taking the ratio of the medial-lateral position of the femoral component relative to the tibial insert (a/A) as a parameter, and considering nine installation conditions of the femoral component, this study established the musculoskeletal multibody dynamics models of UKA to simulate the patients' walking gait, and investigated the influences of the medial-lateral installation positions of the femoral component in UKA on the contact force, joint motion and ligament force of the knee joint. The results showed that, with the increase of a/A ratio, the medial contact force of the UKA implant was decreased and the lateral contact force of the cartilage was increased; the varus rotation, external rotation and posterior translation of the knee joint were increased; and the anterior cruciate ligament force, posterior cruciate ligament force and medial collateral ligament force were decreased. The medial-lateral installation positions of the femoral component in UKA had little effect on knee flexion-extension movement and lateral collateral ligament force. When the a/A ratio was less than or equalled to 0.375, the femoral component collided with the tibia. In order to prevent the overload on the medial implant and lateral cartilage, the excessive ligament force, and the collision between the femoral component and the tibia, it is suggested that the a/A ratio should be controlled within the range of 0.427-0.688 when the femoral component is installed in UKA. This study provides a reference for the accurate installation of the femoral component in UKA.
Humans
;
Arthroplasty, Replacement, Knee
;
Knee Joint/surgery*
;
Knee Prosthesis
;
Gait
;
Rotation
10.Effect of torso training on unstable surface on lower limb motor function in patients with incomplete spinal cord injury.
Yiwen LOU ; Lin LI ; Qian CHEN
Journal of Zhejiang University. Medical sciences 2023;52(2):214-222
OBJECTIVES:
To investigate the effect of torso training on unstable surface on lower limb motor function in patients with incomplete spinal cord injury.
METHODS:
A total of 80 patients with incomplete spinal cord injury caused by thoracolumbar fracture admitted in Ningbo Yinzhou No.2 Hospital from April 2020 to December 2021 were randomly divided into control group and study group, with 40 cases in each group. In addition to routine training, the control group received torso training on stable surface and the study group received torso training on unstable surface. The gait, lower limb muscle strength, balance function, lower limb function, mobility and nerve function of the two groups were compared.
RESULTS:
After treatment, the stride length, stride frequency and comfortable walking speed improved in the two groups (all P<0.05), and the improvements in study group were more significant (all P<0.05). The muscle strength of quadriceps femoris, gluteus maximus, hamstring, anterior tibialis and gastrocnemius were improved in the two groups (all P<0.05), and the improvements in study group were more significant (all P<0.05); the total trajectories of static eye opening and static eye closing gravity center movement in the two groups were significantly shorter (all P<0.05), and the improvements in the study group were more significant (all P<0.05). The dynamic stability limit range and the American Spinal Injury Association (ASIA) lower extremity motor score, Berg balance scale, modified Barthel index scale in the two groups were significantly higher (all P<0.05), and these scores in study group were significantly higher than those in the control group (all P<0.05). Both groups showed a significant improvement in ASIA grade (all P<0.05), and the improvement in the study group was significantly better (P<0.05).
CONCLUSIONS
Torso training on unstable surface can effectively improve the gait and lower limb muscle strength of patients with incomplete spinal cord injury and improve the lower limb motor function.
Humans
;
Walking/physiology*
;
Spinal Cord Injuries
;
Gait/physiology*
;
Lower Extremity
;
Torso

Result Analysis
Print
Save
E-mail