1.Plasma metabolite based clustering of breast cancer survivors and identification of dietary and health related characteristics: an application of unsupervised machine learning
Ga-Eun YIE ; Woojin KYEONG ; Sihan SONG ; Zisun KIM ; Hyun Jo YOUN ; Jihyoung CHO ; Jun Won MIN ; Yoo Seok KIM ; Jung Eun LEE
Nutrition Research and Practice 2025;19(2):273-291
BACKGROUND/OBJECTIVES:
This study aimed to use plasma metabolites to identify clusters of breast cancer survivors and to compare their dietary characteristics and health-related factors across the clusters using unsupervised machine learning.
SUBJECTS/METHODS:
A total of 419 breast cancer survivors were included in this crosssectional study. We considered 30 plasma metabolites, quantified by high-throughput nuclear magnetic resonance metabolomics. Clusters were obtained based on metabolites using 4 different unsupervised clustering methods: k-means (KM), partitioning around medoids (PAM), self-organizing maps (SOM), and hierarchical agglomerative clustering (HAC). The t-test, χ2 test, and Fisher’s exact test were used to compare sociodemographic, lifestyle, clinical, and dietary characteristics across the clusters. P-values were adjusted through a false discovery rate (FDR).
RESULTS:
Two clusters were identified using the 4 methods. Participants in cluster 2 had lower concentrations of apolipoprotein A1 and large high-density lipoprotein (HDL) particles and smaller HDL particle sizes, but higher concentrations of chylomicrons and extremely large very-low-density-lipoprotein (VLDL) particles and glycoprotein acetyls, a higher ratio of monounsaturated fatty acids to total fatty acids, and larger VLDL particle sizes compared with cluster 1. Body mass index was significantly higher in cluster 2 compared with cluster 1 (FDR adjusted-PKM < 0.001; PPAM = 0.001; PSOM < 0.001; and PHAC = 0.043).
CONCLUSION
The breast cancer survivors clustered on the basis of plasma metabolites had distinct characteristics. Further prospective studies are needed to investigate the associations between metabolites, obesity, dietary factors, and breast cancer prognosis.
2.Plasma metabolite based clustering of breast cancer survivors and identification of dietary and health related characteristics: an application of unsupervised machine learning
Ga-Eun YIE ; Woojin KYEONG ; Sihan SONG ; Zisun KIM ; Hyun Jo YOUN ; Jihyoung CHO ; Jun Won MIN ; Yoo Seok KIM ; Jung Eun LEE
Nutrition Research and Practice 2025;19(2):273-291
BACKGROUND/OBJECTIVES:
This study aimed to use plasma metabolites to identify clusters of breast cancer survivors and to compare their dietary characteristics and health-related factors across the clusters using unsupervised machine learning.
SUBJECTS/METHODS:
A total of 419 breast cancer survivors were included in this crosssectional study. We considered 30 plasma metabolites, quantified by high-throughput nuclear magnetic resonance metabolomics. Clusters were obtained based on metabolites using 4 different unsupervised clustering methods: k-means (KM), partitioning around medoids (PAM), self-organizing maps (SOM), and hierarchical agglomerative clustering (HAC). The t-test, χ2 test, and Fisher’s exact test were used to compare sociodemographic, lifestyle, clinical, and dietary characteristics across the clusters. P-values were adjusted through a false discovery rate (FDR).
RESULTS:
Two clusters were identified using the 4 methods. Participants in cluster 2 had lower concentrations of apolipoprotein A1 and large high-density lipoprotein (HDL) particles and smaller HDL particle sizes, but higher concentrations of chylomicrons and extremely large very-low-density-lipoprotein (VLDL) particles and glycoprotein acetyls, a higher ratio of monounsaturated fatty acids to total fatty acids, and larger VLDL particle sizes compared with cluster 1. Body mass index was significantly higher in cluster 2 compared with cluster 1 (FDR adjusted-PKM < 0.001; PPAM = 0.001; PSOM < 0.001; and PHAC = 0.043).
CONCLUSION
The breast cancer survivors clustered on the basis of plasma metabolites had distinct characteristics. Further prospective studies are needed to investigate the associations between metabolites, obesity, dietary factors, and breast cancer prognosis.
3.Plasma metabolite based clustering of breast cancer survivors and identification of dietary and health related characteristics: an application of unsupervised machine learning
Ga-Eun YIE ; Woojin KYEONG ; Sihan SONG ; Zisun KIM ; Hyun Jo YOUN ; Jihyoung CHO ; Jun Won MIN ; Yoo Seok KIM ; Jung Eun LEE
Nutrition Research and Practice 2025;19(2):273-291
BACKGROUND/OBJECTIVES:
This study aimed to use plasma metabolites to identify clusters of breast cancer survivors and to compare their dietary characteristics and health-related factors across the clusters using unsupervised machine learning.
SUBJECTS/METHODS:
A total of 419 breast cancer survivors were included in this crosssectional study. We considered 30 plasma metabolites, quantified by high-throughput nuclear magnetic resonance metabolomics. Clusters were obtained based on metabolites using 4 different unsupervised clustering methods: k-means (KM), partitioning around medoids (PAM), self-organizing maps (SOM), and hierarchical agglomerative clustering (HAC). The t-test, χ2 test, and Fisher’s exact test were used to compare sociodemographic, lifestyle, clinical, and dietary characteristics across the clusters. P-values were adjusted through a false discovery rate (FDR).
RESULTS:
Two clusters were identified using the 4 methods. Participants in cluster 2 had lower concentrations of apolipoprotein A1 and large high-density lipoprotein (HDL) particles and smaller HDL particle sizes, but higher concentrations of chylomicrons and extremely large very-low-density-lipoprotein (VLDL) particles and glycoprotein acetyls, a higher ratio of monounsaturated fatty acids to total fatty acids, and larger VLDL particle sizes compared with cluster 1. Body mass index was significantly higher in cluster 2 compared with cluster 1 (FDR adjusted-PKM < 0.001; PPAM = 0.001; PSOM < 0.001; and PHAC = 0.043).
CONCLUSION
The breast cancer survivors clustered on the basis of plasma metabolites had distinct characteristics. Further prospective studies are needed to investigate the associations between metabolites, obesity, dietary factors, and breast cancer prognosis.
4.Plasma metabolite based clustering of breast cancer survivors and identification of dietary and health related characteristics: an application of unsupervised machine learning
Ga-Eun YIE ; Woojin KYEONG ; Sihan SONG ; Zisun KIM ; Hyun Jo YOUN ; Jihyoung CHO ; Jun Won MIN ; Yoo Seok KIM ; Jung Eun LEE
Nutrition Research and Practice 2025;19(2):273-291
BACKGROUND/OBJECTIVES:
This study aimed to use plasma metabolites to identify clusters of breast cancer survivors and to compare their dietary characteristics and health-related factors across the clusters using unsupervised machine learning.
SUBJECTS/METHODS:
A total of 419 breast cancer survivors were included in this crosssectional study. We considered 30 plasma metabolites, quantified by high-throughput nuclear magnetic resonance metabolomics. Clusters were obtained based on metabolites using 4 different unsupervised clustering methods: k-means (KM), partitioning around medoids (PAM), self-organizing maps (SOM), and hierarchical agglomerative clustering (HAC). The t-test, χ2 test, and Fisher’s exact test were used to compare sociodemographic, lifestyle, clinical, and dietary characteristics across the clusters. P-values were adjusted through a false discovery rate (FDR).
RESULTS:
Two clusters were identified using the 4 methods. Participants in cluster 2 had lower concentrations of apolipoprotein A1 and large high-density lipoprotein (HDL) particles and smaller HDL particle sizes, but higher concentrations of chylomicrons and extremely large very-low-density-lipoprotein (VLDL) particles and glycoprotein acetyls, a higher ratio of monounsaturated fatty acids to total fatty acids, and larger VLDL particle sizes compared with cluster 1. Body mass index was significantly higher in cluster 2 compared with cluster 1 (FDR adjusted-PKM < 0.001; PPAM = 0.001; PSOM < 0.001; and PHAC = 0.043).
CONCLUSION
The breast cancer survivors clustered on the basis of plasma metabolites had distinct characteristics. Further prospective studies are needed to investigate the associations between metabolites, obesity, dietary factors, and breast cancer prognosis.
5.Plasma metabolite based clustering of breast cancer survivors and identification of dietary and health related characteristics: an application of unsupervised machine learning
Ga-Eun YIE ; Woojin KYEONG ; Sihan SONG ; Zisun KIM ; Hyun Jo YOUN ; Jihyoung CHO ; Jun Won MIN ; Yoo Seok KIM ; Jung Eun LEE
Nutrition Research and Practice 2025;19(2):273-291
BACKGROUND/OBJECTIVES:
This study aimed to use plasma metabolites to identify clusters of breast cancer survivors and to compare their dietary characteristics and health-related factors across the clusters using unsupervised machine learning.
SUBJECTS/METHODS:
A total of 419 breast cancer survivors were included in this crosssectional study. We considered 30 plasma metabolites, quantified by high-throughput nuclear magnetic resonance metabolomics. Clusters were obtained based on metabolites using 4 different unsupervised clustering methods: k-means (KM), partitioning around medoids (PAM), self-organizing maps (SOM), and hierarchical agglomerative clustering (HAC). The t-test, χ2 test, and Fisher’s exact test were used to compare sociodemographic, lifestyle, clinical, and dietary characteristics across the clusters. P-values were adjusted through a false discovery rate (FDR).
RESULTS:
Two clusters were identified using the 4 methods. Participants in cluster 2 had lower concentrations of apolipoprotein A1 and large high-density lipoprotein (HDL) particles and smaller HDL particle sizes, but higher concentrations of chylomicrons and extremely large very-low-density-lipoprotein (VLDL) particles and glycoprotein acetyls, a higher ratio of monounsaturated fatty acids to total fatty acids, and larger VLDL particle sizes compared with cluster 1. Body mass index was significantly higher in cluster 2 compared with cluster 1 (FDR adjusted-PKM < 0.001; PPAM = 0.001; PSOM < 0.001; and PHAC = 0.043).
CONCLUSION
The breast cancer survivors clustered on the basis of plasma metabolites had distinct characteristics. Further prospective studies are needed to investigate the associations between metabolites, obesity, dietary factors, and breast cancer prognosis.
6.2023 Obesity Fact Sheet: Prevalence of Obesity and Abdominal Obesity in Adults, Adolescents, and Children in Korea from 2012 to 2021
Su-Min JEONG ; Jin-Hyung JUNG ; Ye Seul YANG ; Wonsock KIM ; In Young CHO ; You-Bin LEE ; Kye-Yeung PARK ; Ga Eun NAM ; Kyungdo HAN ;
Journal of Obesity & Metabolic Syndrome 2024;33(1):27-35
Background:
The 2023 Obesity Fact Sheet aims to present an updated overview of obesity prevalence across all age groups, including children and adolescents.
Methods:
This study included individuals aged ≥20 years (n=16,941,423 in 2021) who underwent health checkups provided by the Korean National Health Insurance Service between 2012 and 2021. The prevalence of obesity and abdominal obesity was standardized by age and sex using data from the 2010 population and housing census. For children and adolescents (6 to 18 years) (n= 884 in 2021), we used the Korea National Health and Nutrition Examination Survey (2012 to 2021), and obesity was defined by the corresponding sex- and agespecific body mass index percentile of 95th or greater based on the 2017 Korean National Growth Chart for Children and Adolescents.
Results:
The overall prevalence of obesity in 2021 is 38.4% (49.2% in men and 27.8% in women), which is a 1.27-fold increase from 30.2% in 2012. The prevalence of obesity has increased across all age groups, particularly among those aged 20, 30, and 80 years. The prevalence of class III obesity substantially increased from 0.35% (men) and 0.42% (women) in 2012 to 1.21% and 0.97% in 2021, with 3.46- and 2.31-fold increases, respectively.This increase was particularly pronounced in young adults. The prevalence of obesity in children and adolescents has surged from 9.7% in 2012 to 19.3% in 2021, with a greater increase among boys.
Conclusion
Our study provides information on the current status of obesity prevalence based on the 2023 Obesity Fact Sheet, emphasizing the urgency of implementing timely strategies to reverse this increasing trend.
7.Major clinical research advances in gynecologic cancer in 2023:a tumultuous year for endometrial cancer
Seung-Hyuk SHIM ; Jung-Yun LEE ; Yoo-Young LEE ; Jeong-Yeol PARK ; Yong Jae LEE ; Se Ik KIM ; Gwan Hee HAN ; Eun Jung YANG ; Joseph J NOH ; Ga Won YIM ; Joo-Hyuk SON ; Nam Kyeong KIM ; Tae-Hyun KIM ; Tae-Wook KONG ; Youn Jin CHOI ; Angela CHO ; Hyunji LIM ; Eun Bi JANG ; Hyun Woong CHO ; Dong Hoon SUH
Journal of Gynecologic Oncology 2024;35(2):e66-
In the 2023 series, we summarized the major clinical research advances in gynecologic oncology based on communications at the conference of Asian Society of Gynecologic Oncology Review Course. The review consisted of 1) Endometrial cancer: immune checkpoint inhibitor, antibody drug conjugates (ADCs), selective inhibitor of nuclear export, CDK4/6 inhibitors WEE1 inhibitor, poly (ADP-ribose) polymerase (PARP) inhibitors. 2) Cervical cancer: surgery in low-risk early-stage cervical cancer, therapy for locally advanced stage and advanced, metastatic, or recurrent setting; and 3) Ovarian cancer: immunotherapy, triplet therapies using immune checkpoint inhibitors along with antiangiogenic agents and PARP inhibitors, and ADCs. In 2023, the field of endometrial cancer treatment witnessed a landmark year, marked by several practice-changing outcomes with immune checkpoint inhibitors and the reliable efficacy of PARP inhibitors and ADCs.
8.A Comparison of Scan Data Accuracy of Implant Scan Body and Encoded Healing Abutment
Ga-Hee KIM ; Eun-Jin PARK ; Young-Eun CHO
Journal of implantology and applied sciences 2024;28(1):32-41
Purpose:
The precision of implant prostheses, which requires accurate impression acquisition, can significantly impact a patient’s treatment prognosis. This study therefore aimed to compare the accuracy of the scan data obtained using an encoded healing abutment with a scan body for digital implant impressions.Materials and Methods: A resin model was constructed using an implant analog (ISLA500, Neobiotech) at sites #15, #17, and #21. After the scan body was connected to on the model, it underwent scanning using a model scanner to produce reference data. The scan body (IS D5, Neobiotech) and encoded healing abutment (IS 4004S, Neobiotech) were connected to the model, and 20 scans per each group were performed using an intraoral scanner (Trios® , 3Shape Dental Systems). The data obtained from these two groups were compared with the reference data using two-way analysis of variance and t-tests.
Results:
The mean distance from the reference point was 0.089 mm in the scan body group and 0.217 mm in the encoded healing abutment group, indicating that the scan body was closer to the reference value than the encoded healing abutment.
Conclusion
Digital implant impressions obtained with the scan body were more accurate than those acquired with the encoded healing abutment when taking digital implant impressions.
9.Major clinical research advances in gynecologic cancer in 2023:a tumultuous year for endometrial cancer
Seung-Hyuk SHIM ; Jung-Yun LEE ; Yoo-Young LEE ; Jeong-Yeol PARK ; Yong Jae LEE ; Se Ik KIM ; Gwan Hee HAN ; Eun Jung YANG ; Joseph J NOH ; Ga Won YIM ; Joo-Hyuk SON ; Nam Kyeong KIM ; Tae-Hyun KIM ; Tae-Wook KONG ; Youn Jin CHOI ; Angela CHO ; Hyunji LIM ; Eun Bi JANG ; Hyun Woong CHO ; Dong Hoon SUH
Journal of Gynecologic Oncology 2024;35(2):e66-
In the 2023 series, we summarized the major clinical research advances in gynecologic oncology based on communications at the conference of Asian Society of Gynecologic Oncology Review Course. The review consisted of 1) Endometrial cancer: immune checkpoint inhibitor, antibody drug conjugates (ADCs), selective inhibitor of nuclear export, CDK4/6 inhibitors WEE1 inhibitor, poly (ADP-ribose) polymerase (PARP) inhibitors. 2) Cervical cancer: surgery in low-risk early-stage cervical cancer, therapy for locally advanced stage and advanced, metastatic, or recurrent setting; and 3) Ovarian cancer: immunotherapy, triplet therapies using immune checkpoint inhibitors along with antiangiogenic agents and PARP inhibitors, and ADCs. In 2023, the field of endometrial cancer treatment witnessed a landmark year, marked by several practice-changing outcomes with immune checkpoint inhibitors and the reliable efficacy of PARP inhibitors and ADCs.
10.A Comparison of Scan Data Accuracy of Implant Scan Body and Encoded Healing Abutment
Ga-Hee KIM ; Eun-Jin PARK ; Young-Eun CHO
Journal of implantology and applied sciences 2024;28(1):32-41
Purpose:
The precision of implant prostheses, which requires accurate impression acquisition, can significantly impact a patient’s treatment prognosis. This study therefore aimed to compare the accuracy of the scan data obtained using an encoded healing abutment with a scan body for digital implant impressions.Materials and Methods: A resin model was constructed using an implant analog (ISLA500, Neobiotech) at sites #15, #17, and #21. After the scan body was connected to on the model, it underwent scanning using a model scanner to produce reference data. The scan body (IS D5, Neobiotech) and encoded healing abutment (IS 4004S, Neobiotech) were connected to the model, and 20 scans per each group were performed using an intraoral scanner (Trios® , 3Shape Dental Systems). The data obtained from these two groups were compared with the reference data using two-way analysis of variance and t-tests.
Results:
The mean distance from the reference point was 0.089 mm in the scan body group and 0.217 mm in the encoded healing abutment group, indicating that the scan body was closer to the reference value than the encoded healing abutment.
Conclusion
Digital implant impressions obtained with the scan body were more accurate than those acquired with the encoded healing abutment when taking digital implant impressions.

Result Analysis
Print
Save
E-mail