1.Genetic analysis of a child with early onset neurodevelopmental disorder with involuntary movement and a literature review.
Wenjing HU ; Hongjun FANG ; Jingwen TANG ; Zhen ZHOU ; Liwen WU
Chinese Journal of Medical Genetics 2023;40(4):385-389
		                        		
		                        			OBJECTIVE:
		                        			To explore the clinical phenotype and genetic basis of a child with early onset neurodevelopmental disorder with involuntary movement (NEDIM).
		                        		
		                        			METHODS:
		                        			A child who presented at Department of Neurology of Hunan Children's Hospital on October 8, 2020 was selected as the study subject. Clinical data of the child were collected. Genomic DNA was extracted from peripheral blood samples of the child and his parents. Whole exome sequencing (WES) was carried out for the child. Candidate variant was verified by Sanger sequencing and bioinformatic analysis. Relevant literature was searched from the CNKI, PubMed and Google Scholar databases to summarize the clinical phenotypes and genetic variants of the patients.
		                        		
		                        			RESULTS:
		                        			This child was a 3-year-and-3-month boy with involuntary trembling of limbs and motor and language delay. WES revealed that the child has harbored a c.626G>A (p.Arg209His) variant of the GNAO1 gene. Sanger sequencing confirmed that neither of his parents has carried the same variant. The variant had been reported in HGMD and ClinVar databases, but not in the dbSNP, ExAC and 1000 Genomes databases. Prediction with SIFT, PolyPhen-2, and Mutation Taster online software suggested that the variant may be deleterious to the protein function. By UniProt database analysis, the encode amino acid is highly conserved among various species. Prediction with Modeller and PyMOL software indicated that the variant may affect the function of GαO protein. Based on the guideline of the American College of Medical Genetics and Genomics (ACMG), the variant was rated as pathogenic.
		                        		
		                        			CONCLUSION
		                        			The GNAO1 gene c.626G>A (p.Arg209His) variant probably underlay the NEDIM in this child. Above finding has expanded the phenotypic spectrum of GNAO1 gene c.626G>A (p.Arg209His) variant and provided a reference for clinical diagnosis and genetic counseling.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Computational Biology
		                        			;
		                        		
		                        			Genetic Counseling
		                        			;
		                        		
		                        			Genomics
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Neurodevelopmental Disorders/genetics*
		                        			;
		                        		
		                        			Dyskinesias
		                        			;
		                        		
		                        			GTP-Binding Protein alpha Subunits, Gi-Go
		                        			
		                        		
		                        	
2.Gαi1/3 mediation of Akt-mTOR activation is important for RSPO3-induced angiogenesis.
Gang XU ; Li-Na QI ; Mei-Qing ZHANG ; Xue-Yun LI ; Jin-Long CHAI ; Zhi-Qing ZHANG ; Xia CHEN ; Qian WANG ; Ke-Ran LI ; Cong CAO
Protein & Cell 2023;14(3):217-222
3.YME1L overexpression exerts pro-tumorigenic activity in glioma by promoting Gαi1 expression and Akt activation.
Fang LIU ; Gang CHEN ; Li-Na ZHOU ; Yin WANG ; Zhi-Qing ZHANG ; Xihu QIN ; Cong CAO
Protein & Cell 2023;14(3):223-229
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Brain Neoplasms/metabolism*
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			Glioma/metabolism*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			ATPases Associated with Diverse Cellular Activities/metabolism*
		                        			;
		                        		
		                        			Mitochondrial Proteins/metabolism*
		                        			;
		                        		
		                        			GTP-Binding Protein alpha Subunits/metabolism*
		                        			
		                        		
		                        	
4.Analysis of GNAS gene variant in a Chinese pedigree affected with pseudohypoparathyroidism.
Qian LI ; Jia HUANG ; Xing DAI ; Jiahuan HE ; Congmin LI ; Yue WANG ; Hongyan LIU
Chinese Journal of Medical Genetics 2023;40(1):31-35
		                        		
		                        			OBJECTIVE:
		                        			To explore the genetic etiology of a Chinese pedigree affected with pseudohypoparathyroidism.
		                        		
		                        			METHODS:
		                        			Peripheral blood samples of the proband and his parents were collected and subjected to trio-whole exome sequencing (trio-WES). Candidate variants were verified among the pedigree and 50 randomly selected healthy individuals through analysis of restriction fragment length polymorphism. Short tandem repeat (STR) linkage analysis was used to verify the parental origin of the pathogenic variants.
		                        		
		                        			RESULTS:
		                        			Trio-WES and Sanger sequencing showed that the proband and his mother had both harbored a c.121C>G (p.His41Asp) variant of the GNAS gene, which was not found in other family members and the 50 healthy controls. The variant was not found in international databases. Based on guidelines from the American College of Medical Genetics and Genomics, the variant was predicted to be likely pathogenic.
		                        		
		                        			CONCLUSION
		                        			The novel c.121C>G variant of the GNAS gene probably underlay the disease in this pedigree. Above finding has enriched the spectrum of GNAS gene variants.
		                        		
		                        		
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Pedigree
		                        			;
		                        		
		                        			East Asian People
		                        			;
		                        		
		                        			Mothers
		                        			;
		                        		
		                        			Exome Sequencing
		                        			;
		                        		
		                        			Pseudohypoparathyroidism/genetics*
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			China
		                        			;
		                        		
		                        			Chromogranins/genetics*
		                        			;
		                        		
		                        			GTP-Binding Protein alpha Subunits, Gs/genetics*
		                        			
		                        		
		                        	
5.Palmitoylation of GNAQ/11 is critical for tumor cell proliferation and survival in GNAQ/11-mutant uveal melanoma.
Yan ZHANG ; Baoyuan ZHANG ; Yongyun LI ; Yuting DAI ; Jiaoyang LI ; Donghe LI ; Zhizhou XIA ; Jianming ZHANG ; Ping LIU ; Ming CHEN ; Bo JIAO ; Ruibao REN
Frontiers of Medicine 2022;16(5):784-798
		                        		
		                        			
		                        			More than 85% of patients with uveal melanoma (UM) carry a GNAQ or GNA11 mutation at a hotspot codon (Q209) that encodes G protein α subunit q/11 polypeptides (Gαq/11). GNAQ/11 relies on palmitoylation for membrane association and signal transduction. Despite the palmitoylation of GNAQ/11 was discovered long before, its implication in UM remains unclear. Here, results of palmitoylation-targeted mutagenesis and chemical interference approaches revealed that the loss of GNAQ/11 palmitoylation substantially affected tumor cell proliferation and survival in UM cells. Palmitoylation inhibition through the mutation of palmitoylation sites suppressed GNAQ/11Q209L-induced malignant transformation in NIH3T3 cells. Importantly, the palmitoylation-deficient oncogenic GNAQ/11 failed to rescue the cell death initiated by the knock down of endogenous GNAQ/11 oncogenes in UM cells, which are much more dependent on Gαq/11 signaling for cell survival and proliferation than other melanoma cells without GNAQ/11 mutations. Furthermore, the palmitoylation inhibitor, 2-bromopalmitate, also specifically disrupted Gαq/11 downstream signaling by interfering with the MAPK pathway and BCL2 survival pathway in GNAQ/11-mutant UM cells and showed a notable synergistic effect when applied in combination with the BCL2 inhibitor, ABT-199, in vitro. The findings validate that GNAQ/11 palmitoylation plays a critical role in UM and may serve as a promising therapeutic target for GNAQ/11-driven UM.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Lipoylation
		                        			;
		                        		
		                        			NIH 3T3 Cells
		                        			;
		                        		
		                        			Uveal Neoplasms/genetics*
		                        			;
		                        		
		                        			Melanoma/genetics*
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-bcl-2
		                        			;
		                        		
		                        			GTP-Binding Protein alpha Subunits, Gq-G11/genetics*
		                        			
		                        		
		                        	
6.Bioinformatic analysis of differentially expressed proteins in the dorsal raphe nucleus of rats after continuous treatment with olanzapine.
Ping HUANG ; Jian Cheng ZHU ; Hua LI ; Yan Zhao WANG ; Yi Min TANG ; Qiang LIU
Journal of Southern Medical University 2022;42(8):1221-1229
		                        		
		                        			OBJECTIVE:
		                        			To analyze the differentially expressed proteins in the dorsal raphe nucleus of rats treated with olanzapine and explore the possible mechanism of metabolic disorders in the early stage of olanzapine treatment.
		                        		
		                        			METHODS:
		                        			Twenty male and 20 female SD rats were both randomized equally into olanzapine group and control group for daily treatment with olanzapine and saline for 4 weeks, respectively. One hour after the last treatment, the dorsal raphe nucleus of the rats was dissected for proteomic analysis using iTRAQ combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS). GO, KEGG pathway, COG, pathways and protein interaction network analyses of the differentially expressed proteins were performed. Several target genes were selected from the proteomic list, and their expression levels in the dorsal raphe nucleus of another 24 mice with identical grouping and treatment using real time real-time quantitative PCR and Western blotting.
		                        		
		                        			RESULTS:
		                        			A total of 214 differentially expressed proteins were identified in the dorsal raphe nucleus of olanzapine-treated mice, including 72 unregulated and 142 downregulated proteins. GO analyses showed that the differentially expressed proteins were enriched in cellular process, biological regulation, metabolic process, response to stimulus, multicellular organismal process, bindings, catalytic activity, molecular function regulator and transcription regulator activity. KEGG analysis suggested that these proteins were enriched in fluid shear stress and atherosclerosis, serotonergic synapse, butanoate metabolism, thyroid hormone synthesis and IL-17 signaling pathway. The differentially expressed proteins Cav1, Hsp90b1, Canx, Gnai1, MAPK9, and LOC685513 were located at the nodes of the protein-protein interaction network in close relation with metabolic disorders. In olanzapine-treated mice, the expression of Hmgcs2, a negative regulator of apoptosis, was significantly down-regulated in the dorsal raphe nucleus, where the expressions of Pla2g4e, Slc6a4 and Gnai1 involved in serotonergic synapse were significantly upregulated.
		                        		
		                        			CONCLUSION
		                        			In the early stage of treatment, olanzapine may contribute to the occurrence of metabolic disorders in rats by regulating the expressions of Cav1, Hsp90b1, Canx, Gnai1, MAPK9, LOC685513 (Gng14) and 5-HTR2 synapse-related proteins in the dorsal raphe nucleus.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Chromatography, Liquid
		                        			;
		                        		
		                        			Computational Biology
		                        			;
		                        		
		                        			Dorsal Raphe Nucleus
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			GTP-Binding Protein alpha Subunits, Gi-Go
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Olanzapine/adverse effects*
		                        			;
		                        		
		                        			Proteomics
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Tandem Mass Spectrometry
		                        			
		                        		
		                        	
7.Clinical and genetic characteristics for 4 patients with Type Ib pseudohypoparathyroidism.
Yujun WANG ; Wenjun YANG ; Ping JIN ; Liling ZHAO ; Honghui HE
Journal of Central South University(Medical Sciences) 2022;47(10):1461-1466
		                        		
		                        			
		                        			Pseudohypoparayhyroidism (PHP) is a rare autosomal dominant or recessive genetic disorder characterized by low calcium, high phosphorus, and target organ resistance to parathyroid. The clinical characteristics and genetic features in 4 patients with Type Ib PHP in the Third Xiangya Hospital, Central South University, have been reviewed. All 4 patients had low calcium, high phosphorus, and parathyroid resistance. Among them, 2 patients had slightly elevated thyroid stimulating hormone and mild features of Albright's hereditary osteodystrophy, and one patient had hypokalemia. No guanine nucleotide-binding protein alpha-stimulating activity polypeptide 1 (GNAS) and gene variant associated with hypokalemia were identified using the whole exome sequencing. The results of the methylation-specific multiple ligation-dependent probe amplification showed that there were abnormal methylation of the upstream differentially methylated regions of GNAS in the 4 patients. There were phenotype overlap among the various subtypes of PHP. Detection of GNAS gene methylation in patients with clinical suspicion of Type Ib PHP is helpful for the diagnosis and treatment of PHP.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Chromogranins/genetics*
		                        			;
		                        		
		                        			GTP-Binding Protein alpha Subunits, Gs/genetics*
		                        			;
		                        		
		                        			Hypokalemia
		                        			;
		                        		
		                        			Calcium
		                        			;
		                        		
		                        			Pseudohypoparathyroidism/genetics*
		                        			;
		                        		
		                        			Phosphorus
		                        			
		                        		
		                        	
8.An analysis of GNAS and THRA gene mutations in children with congenital hypothyroidism.
Xiao-Yu CHEN ; Yong LIU ; Jian-Hua LIU ; Xiao-Song QIN
Chinese Journal of Contemporary Pediatrics 2019;21(7):680-684
		                        		
		                        			OBJECTIVE:
		                        			To preliminarily investigate the relationship between stimulatory G protein α subunit (GNAS) and thyroid hormone receptor α (THRA) gene mutations and clinical phenotypes in children with congenital hypothyroidism (CH).
		                        		
		                        			METHODS:
		                        			A total of 70 children with CH diagnosed by neonatal screening were enrolled. Their peripheral blood samples were collected to extract genomic DNA. GNAS and THRA genes were screened for mutations using next-generation sequencing. Bioinformatics software was used to analyze the pathogenicity of gene mutations.
		                        		
		                        			RESULTS:
		                        			Of the 70 children with CH, nine missense mutations (three known mutations and six novel mutations) in the GNAS gene were detected in three patients (4%), and one gene polymorphism, c.508A>G(p.I170V), in the THRA gene was detected in four patients. The analysis results of bioinformatics software and ACMG/AMP guidelines showed that the two GNAS gene mutations [c.301C>T(p.R101C) and c.334G>A(p.E112K)] were more likely to be pathogenic. Three children with GNAS gene mutations showed different degrees of hypothyroidism.
		                        		
		                        			CONCLUSIONS
		                        			GNAS gene mutations are related to the development of CH, and children with CH have different clinical manifestations. THRA gene mutations may not be associated with CH.
		                        		
		                        		
		                        		
		                        			Chromogranins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Congenital Hypothyroidism
		                        			;
		                        		
		                        			GTP-Binding Protein alpha Subunits, Gs
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Genes, erbA
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Infant, Newborn
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Phenotype
		                        			;
		                        		
		                        			Thyroid Hormone Receptors alpha
		                        			;
		                        		
		                        			genetics
		                        			
		                        		
		                        	
9.Circulating-free DNA Mutation Associated with Response of Targeted Therapy in Human Epidermal Growth Factor Receptor 2-positive Metastatic Breast Cancer.
Qing YE ; Fan QI ; Li BIAN ; Shao-Hua ZHANG ; Tao WANG ; Ze-Fei JIANG
Chinese Medical Journal 2017;130(5):522-529
BACKGROUNDThe addition of anti-human epidermal growth factor receptor 2 (HER2)-targeted drugs, such as trastuzumab, lapatinib, and trastuzumab emtansine (T-DM1), to chemotherapy significantly improved prognosis of HER2-positive breast cancer patients. However, it was confused that metastatic patients vary in the response of targeted drug. Therefore, methods of accurately predicting drug response were really needed. To overcome the spatial and temporal limitations of biopsies, we aimed to develop a more sensitive and less invasive method of detecting mutations associated with anti-HER2 therapeutic response through circulating-free DNA (cfDNA).
METHODSFrom March 6, 2014 to December 10, 2014, 24 plasma samples from 20 patients with HER2-positive metastatic breast cancer who received systemic therapy were eligible. We used a panel for detection of hot-spot mutations from 50 oncogenes and tumor suppressor genes, and then used targeted next-generation sequencing (NGS) to identify somatic mutation of these samples in those 50 genes. Samples taken before their first trastuzumab administration and subsequently proven with clinical benefit were grouped into sensitive group. The others were collected after disease progression of the trastuzumab-based therapy and were grouped into the resistant group.
RESULTSA total of 486 single-nucleotide variants from 46 genes were detected. Of these 46 genes, phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), proto-oncogene c-Kit (KIT), and tumor protein p53 (TP53) were the most common mutated genes. Seven genes, including epidermal growth factor receptor (EGFR), G protein subunit alpha S (GNAS), HRas proto-oncogene (HRAS), mutL homolog 1 (MLH1), cadherin 1 (CDH1), neuroblastoma RAS viral oncogene homolog (NRAS), and NOTCH1, that only occurred m utations in the resistant group were associated with the resistance of targeted therapy. In addition, we detected a HER2 S855I mutation in two patients who had persistent benefits from anti-HER2 therapy.
CONCLUSIONTargeted NGS of cfDNA has potential clinical utility to detect biomarkers from HER2-targeted therapies.
Adolescent ; Adult ; Aged ; Biomarkers, Tumor ; genetics ; Breast Neoplasms ; genetics ; metabolism ; Cadherins ; genetics ; Chromogranins ; genetics ; Class I Phosphatidylinositol 3-Kinases ; Drug Resistance, Neoplasm ; genetics ; Female ; GTP-Binding Protein alpha Subunits, Gs ; genetics ; Humans ; Male ; Middle Aged ; Mutation ; genetics ; Phosphatidylinositol 3-Kinases ; genetics ; Proto-Oncogene Proteins c-kit ; genetics ; Receptor, ErbB-2 ; metabolism ; Receptor, Notch1 ; genetics ; Tumor Suppressor Protein p53 ; genetics ; Young Adult
10.Galpha12 Protects Vascular Endothelial Cells from Serum Withdrawal-Induced Apoptosis through Regulation of miR-155.
Hyeon Jeong LEE ; Eun Jig LEE ; Miran SEO
Yonsei Medical Journal 2016;57(1):247-253
		                        		
		                        			
		                        			PURPOSE: Apoptosis of vascular endothelial cells is a type of endothelial damage that is associated with the pathogenesis of cardiovascular diseases such as atherosclerosis. Heterotrimeric GTP-binding proteins (G proteins), including the alpha 12 subunit of G protein (Galpha12), have been found to modulate cellular proliferation, differentiation, and apoptosis of numerous cell types. However, the role of Galpha12 in the regulation of apoptosis of vascular cells has not been elucidated. We investigated the role of Galpha12 in serum withdrawal-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and its underlying mechanisms. MATERIALS AND METHODS: HUVECs were transfected with Galpha12 small-interfering RNA (siRNA) to knockdown the endogenous Galpha12 expression and were serum-deprived for 6 h to induce apoptosis. The apoptosis of HUVECs were assessed by Western blotting and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expressions of microRNAs were analyzed by quantitative real-time PCR. RESULTS: Knockdown of Galpha12 with siRNA augmented the serum withdrawal-induced apoptosis of HUVECs and markedly repressed the expression of microRNA-155 (miR-155). Serum withdrawal-induced apoptosis of HUVECs was inhibited by the overexpression of miR-155 and increased significantly due to the inhibition of miR-155. Notably, the elevation of miR-155 expression prevented increased apoptosis of Galpha12-deficient HUVECs. CONCLUSION: From these results, we conclude that Galpha12 protects HUVECs from serum withdrawal-induced apoptosis by retaining miR-155 expression. This suggests that Galpha12 might play a protective role in vascular endothelial cells by regulating the expression of microRNAs.
		                        		
		                        		
		                        		
		                        			*Apoptosis
		                        			;
		                        		
		                        			Atherosclerosis/*blood/genetics/immunology
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Endothelial Cells/*metabolism
		                        			;
		                        		
		                        			GTP-Binding Protein alpha Subunits, G12-G13/*genetics
		                        			;
		                        		
		                        			Gene Expression Profiling
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Human Umbilical Vein Endothelial Cells/cytology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			MicroRNAs/*metabolism
		                        			;
		                        		
		                        			Protective Agents
		                        			;
		                        		
		                        			*RNA, Small Interfering
		                        			;
		                        		
		                        			Real-Time Polymerase Chain Reaction
		                        			;
		                        		
		                        			*Transfection
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail