1.Revealing the Precise Role of Calretinin Neurons in Epilepsy: We Are on the Way.
Yingbei QI ; Heming CHENG ; Yi WANG ; Zhong CHEN
Neuroscience Bulletin 2022;38(2):209-222
		                        		
		                        			
		                        			Epilepsy is a common neurological disorder characterized by hyperexcitability in the brain. Its pathogenesis is classically associated with an imbalance of excitatory and inhibitory neurons. Calretinin (CR) is one of the three major types of calcium-binding proteins present in inhibitory GABAergic neurons. The functions of CR and its role in neural excitability are still unknown. Recent data suggest that CR neurons have diverse neurotransmitters, morphologies, distributions, and functions in different brain regions across various species. Notably, CR neurons in the hippocampus, amygdala, neocortex, and thalamus are extremely susceptible to excitotoxicity in the epileptic brain, but the causal relationship is unknown. In this review, we focus on the heterogeneous functions of CR neurons in different brain regions and their relationship with neural excitability and epilepsy. Importantly, we provide perspectives on future investigations of the role of CR neurons in epilepsy.
		                        		
		                        		
		                        		
		                        			Amygdala/metabolism*
		                        			;
		                        		
		                        			Calbindin 2/metabolism*
		                        			;
		                        		
		                        			Epilepsy
		                        			;
		                        		
		                        			GABAergic Neurons
		                        			;
		                        		
		                        			Hippocampus/metabolism*
		                        			;
		                        		
		                        			Humans
		                        			
		                        		
		                        	
2.O-GlcNAcylation in Ventral Tegmental Area Dopaminergic Neurons Regulates Motor Learning and the Response to Natural Reward.
Ming-Shuo SHAO ; Xiao YANG ; Chen-Chun ZHANG ; Chang-You JIANG ; Ying MAO ; Wen-Dong XU ; Lan MA ; Fei-Fei WANG
Neuroscience Bulletin 2022;38(3):263-274
		                        		
		                        			
		                        			Protein O-GlcNAcylation is a post-translational modification that links environmental stimuli with changes in intracellular signal pathways, and its disturbance has been found in neurodegenerative diseases and metabolic disorders. However, its role in the mesolimbic dopamine (DA) system, especially in the ventral tegmental area (VTA), needs to be elucidated. Here, we found that injection of Thiamet G, an O-GlcNAcase (OGA) inhibitor, in the VTA and nucleus accumbens (NAc) of mice, facilitated neuronal O-GlcNAcylation and decreased the operant response to sucrose as well as the latency to fall in rotarod test. Mice with DAergic neuron-specific knockout of O-GlcNAc transferase (OGT) displayed severe metabolic abnormalities and died within 4-8 weeks after birth. Furthermore, mice specifically overexpressing OGT in DAergic neurons in the VTA had learning defects in the operant response to sucrose, and impaired motor learning in the rotarod test. Instead, overexpression of OGT in GABAergic neurons in the VTA had no effect on these behaviors. These results suggest that protein O-GlcNAcylation of DAergic neurons in the VTA plays an important role in regulating the response to natural reward and motor learning in mice.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Dopaminergic Neurons/physiology*
		                        			;
		                        		
		                        			GABAergic Neurons/physiology*
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Nucleus Accumbens/metabolism*
		                        			;
		                        		
		                        			Reward
		                        			;
		                        		
		                        			Ventral Tegmental Area/metabolism*
		                        			
		                        		
		                        	
3.Anterior Cingulate Cortex Mediates Hyperalgesia and Anxiety Induced by Chronic Pancreatitis in Rats.
Dan REN ; Jia-Ni LI ; Xin-Tong QIU ; Fa-Ping WAN ; Zhen-Yu WU ; Bo-Yuan FAN ; Ming-Ming ZHANG ; Tao CHEN ; Hui LI ; Yang BAI ; Yun-Qing LI
Neuroscience Bulletin 2022;38(4):342-358
		                        		
		                        			
		                        			Central sensitization is essential in maintaining chronic pain induced by chronic pancreatitis (CP), but cortical modulation of painful CP remains elusive. Here, we examined the role of the anterior cingulate cortex (ACC) in the pathogenesis of abdominal hyperalgesia in a rat model of CP induced by intraductal administration of trinitrobenzene sulfonic acid (TNBS). TNBS treatment resulted in long-term abdominal hyperalgesia and anxiety in rats. Morphological data indicated that painful CP induced a significant increase in FOS-expressing neurons in the nucleus tractus solitarii (NTS) and ACC, and some FOS-expressing neurons in the NTS projected to the ACC. In addition, a larger portion of ascending fibers from the NTS innervated pyramidal neurons, the neural subpopulation primarily expressing FOS under the condition of painful CP, rather than GABAergic neurons within the ACC. CP rats showed increased expression of vesicular glutamate transporter 1, and increased membrane trafficking and phosphorylation of the N-methyl-D-aspartate receptor (NMDAR) subunit NR2B and the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit GluR1 within the ACC. Microinjection of NMDAR and AMPAR antagonists into the ACC to block excitatory synaptic transmission significantly attenuated abdominal hyperalgesia in CP rats, which was similar to the analgesic effect of endomorphins injected into the ACC. Specifically inhibiting the excitability of ACC pyramidal cells via chemogenetics reduced both hyperalgesia and comorbid anxiety, whereas activating these neurons via optogenetics failed to aggravate hyperalgesia and anxiety in CP rats. Taken together, these findings provide neurocircuit, biochemical, and behavioral evidence for involvement of the ACC in hyperalgesia and anxiety in CP rats, as well as novel insights into the cortical modulation of painful CP, and highlights the ACC as a potential target for neuromodulatory interventions in the treatment of painful CP.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anxiety/etiology*
		                        			;
		                        		
		                        			Chronic Pain/etiology*
		                        			;
		                        		
		                        			GABAergic Neurons
		                        			;
		                        		
		                        			Gyrus Cinguli/metabolism*
		                        			;
		                        		
		                        			Hyperalgesia/metabolism*
		                        			;
		                        		
		                        			Pancreatitis, Chronic/pathology*
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Receptors, N-Methyl-D-Aspartate/metabolism*
		                        			;
		                        		
		                        			Trinitrobenzenesulfonic Acid/toxicity*
		                        			
		                        		
		                        	
4.Histamine Excites Rat GABAergic Ventral Pallidum Neurons via Co-activation of H1 and H2 Receptors.
Miao-Jin JI ; Xiao-Yang ZHANG ; Xiao-Chun PENG ; Yang-Xun ZHANG ; Zi CHEN ; Lei YU ; Jian-Jun WANG ; Jing-Ning ZHU
Neuroscience Bulletin 2018;34(6):1029-1036
		                        		
		                        			
		                        			The ventral pallidum (VP) is a crucial component of the limbic loop of the basal ganglia and participates in the regulation of reward, motivation, and emotion. Although the VP receives afferent inputs from the central histaminergic system, little is known about the effect of histamine on the VP and the underlying receptor mechanism. Here, we showed that histamine, a hypothalamic-derived neuromodulator, directly depolarized and excited the GABAergic VP neurons which comprise a major cell type in the VP and are responsible for encoding cues of incentive salience and reward hedonics. Both postsynaptic histamine H1 and H2 receptors were found to be expressed in the GABAergic VP neurons and co-mediate the excitatory effect of histamine. These results suggested that the central histaminergic system may actively participate in VP-mediated motivational and emotional behaviors via direct modulation of the GABAergic VP neurons. Our findings also have implications for the role of histamine and the central histaminergic system in psychiatric disorders.
		                        		
		                        		
		                        		
		                        			Action Potentials
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Basal Forebrain
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Dimaprit
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Dose-Response Relationship, Drug
		                        			;
		                        		
		                        			Electric Stimulation
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			GABAergic Neurons
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Histamine
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Histamine Agonists
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Lysine
		                        			;
		                        		
		                        			analogs & derivatives
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Patch-Clamp Techniques
		                        			;
		                        		
		                        			Pyridines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Receptors, Histamine H1
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Receptors, Histamine H2
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Sodium Channel Blockers
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Tetrodotoxin
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			gamma-Aminobutyric Acid
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
5.Whole-Brain Mapping of Direct Inputs to and Axonal Projections from GABAergic Neurons in the Parafacial Zone.
Yun-Ting SU ; Meng-Yang GU ; Xi CHU ; Xiang FENG ; Yan-Qin YU
Neuroscience Bulletin 2018;34(3):485-496
		                        		
		                        			
		                        			The GABAergic neurons in the parafacial zone (PZ) play an important role in sleep-wake regulation and have been identified as part of a sleep-promoting center in the brainstem, but the long-range connections mediating this function remain poorly characterized. Here, we performed whole-brain mapping of both the inputs and outputs of the GABAergic neurons in the PZ of the mouse brain. We used the modified rabies virus EnvA-ΔG-DsRed combined with a Cre/loxP gene-expression strategy to map the direct monosynaptic inputs to the GABAergic neurons in the PZ, and found that they receive inputs mainly from the hypothalamic area, zona incerta, and parasubthalamic nucleus in the hypothalamus; the substantia nigra, pars reticulata and deep mesencephalic nucleus in the midbrain; and the intermediate reticular nucleus and medial vestibular nucleus (parvocellular part) in the pons and medulla. We also mapped the axonal projections of the PZ GABAergic neurons with adeno-associated virus, and defined the reciprocal connections of the PZ GABAergic neurons with their input and output nuclei. The newly-found inputs and outputs of the PZ were also listed compared with the literature. This cell-type-specific neuronal whole-brain mapping of the PZ GABAergic neurons may reveal the circuits underlying various functions such as sleep-wake regulation.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Axons
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Brain
		                        			;
		                        		
		                        			anatomy & histology
		                        			;
		                        		
		                        			Brain Mapping
		                        			;
		                        		
		                        			Brain Stem
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			GABAergic Neurons
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Green Fluorescent Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Mice, Transgenic
		                        			;
		                        		
		                        			Neural Pathways
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Peptide Elongation Factor 1
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rabies virus
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Transduction, Genetic
		                        			;
		                        		
		                        			Vesicular Inhibitory Amino Acid Transport Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
6.Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex.
Da Un JEONG ; Jin Hwan OH ; Ji Eun LEE ; Jihyeon LEE ; Zang Hee CHO ; Jin Woo CHANG ; Won Seok CHANG
Yonsei Medical Journal 2016;57(1):165-172
		                        		
		                        			
		                        			PURPOSE: Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. MATERIALS AND METHODS: We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by 18F-2-fluoro-2-deoxyglucose positron emission tomography. RESULTS: During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. CONCLUSION: Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.
		                        		
		                        		
		                        		
		                        			Acetylcholine/metabolism
		                        			;
		                        		
		                        			Alzheimer Disease
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antibodies, Monoclonal/*pharmacology
		                        			;
		                        		
		                        			Basal Forebrain/*drug effects/metabolism
		                        			;
		                        		
		                        			Cholinergic Agents/administration & dosage/*pharmacology
		                        			;
		                        		
		                        			Cholinergic Neurons/*drug effects/metabolism
		                        			;
		                        		
		                        			Fluorodeoxyglucose F18
		                        			;
		                        		
		                        			GABAergic Neurons/*drug effects/metabolism
		                        			;
		                        		
		                        			Glucose/*metabolism
		                        			;
		                        		
		                        			Gyrus Cinguli/*drug effects/metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Injections
		                        			;
		                        		
		                        			Maze Learning
		                        			;
		                        		
		                        			Motor Activity/physiology
		                        			;
		                        		
		                        			Positron-Emission Tomography
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Ribosome Inactivating Proteins, Type 1/*pharmacology
		                        			
		                        		
		                        	
7.Gephyrin: a central GABAergic synapse organizer.
Experimental & Molecular Medicine 2015;47(4):e158-
		                        		
		                        			
		                        			Gephyrin is a central element that anchors, clusters and stabilizes glycine and gamma-aminobutyric acid type A receptors at inhibitory synapses of the mammalian brain. It self-assembles into a hexagonal lattice and interacts with various inhibitory synaptic proteins. Intriguingly, the clustering of gephyrin, which is regulated by multiple posttranslational modifications, is critical for inhibitory synapse formation and function. In this review, we summarize the basic properties of gephyrin and describe recent findings regarding its roles in inhibitory synapse formation, function and plasticity. We will also discuss the implications for the pathophysiology of brain disorders and raise the remaining open questions in this field.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Carrier Proteins/chemistry/genetics/*metabolism
		                        			;
		                        		
		                        			Disease Susceptibility
		                        			;
		                        		
		                        			GABAergic Neurons/*metabolism
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Membrane Proteins/chemistry/genetics/*metabolism
		                        			;
		                        		
		                        			Protein Binding
		                        			;
		                        		
		                        			Protein Interaction Domains and Motifs
		                        			;
		                        		
		                        			Protein Processing, Post-Translational
		                        			;
		                        		
		                        			Protein Transport
		                        			;
		                        		
		                        			Synapses/*metabolism
		                        			
		                        		
		                        	
8.GABAergic neurons in the central nucleus of amygdala modulate sodium appetite in rats.
Qian WANG ; Jian-qun YAN ; Jin-rong LI ; Ke CHEN ; Bo SUN ; Shi-ru ZHAO
Journal of Southern Medical University 2010;30(8):1783-1786
OBJECTIVETo determine whether the GABA-containing neurons in rat central nucleus of amygdala (CeA) can be activated by acute sodium deprivation.
METHODSAcute sodium depletion was induced by subcutaneous injection of furosemide in rats followed by 24 h of dietary sodium deprivation. The rats underwent 0.3 mol/L NaCl/distilled water two bottle choice test, and the activated neurons were labeled and identified with GABA/Fos-double labeling immunohistochemistry.
RESULTSThe rats with acute sodium depletion exhibited significantly more numerous c-fos-positive neurons and GABA/Fos double-labeled neurons in the CeA than the control group (P<0.01, P<0.05). Consumption of 0.3 mol/L NaCl significantly increased the number of c-fos and GABA/Fos double labeled neurons compared to the distilled water group (P<0.001, P<0.01).
CONCLUSIONGABAergic neurons in the CeA may play an inhibitory role in the regulation of sodium intake in rats with acute sodium depletion.
Amygdala ; cytology ; metabolism ; Animals ; GABAergic Neurons ; metabolism ; Male ; Rats ; Rats, Sprague-Dawley ; Sodium Chloride, Dietary ; metabolism ; Sodium, Dietary
            
Result Analysis
Print
Save
E-mail