1.Influence evaluation of pharmaceutical quality control on medication therapy management services by the ECHO model
Kun LIU ; Huanhuan JIANG ; Yushuang LI ; Yan HUANG ; Qianying ZHANG ; Dong CHEN ; Xiulin GU ; Jinhui FENG ; Zijian WANG ; Yunfei CHEN ; Yajuan QI ; Yanlei GE ; Aishuang FU
China Pharmacy 2025;36(9):1123-1128
		                        		
		                        			
		                        			OBJECTIVE To evaluate the influence of pharmaceutical quality control on the efficiency and outcomes of standardized medication therapy management (MTM) services for patients with coronary heart disease by using Economic, Clinical and Humanistic Outcomes (ECHO) model. METHODS This study collected case data of coronary heart disease patients who received MTM services during January-March 2023 (pre-quality control implementation group, n=96) and June-August 2023 (post-quality control implementation group, n=164). Using propensity score matching analysis, 80 patients were selected from each group. The study subsequently compared the economic, clinical, and humanistic outcome indicators of pharmaceutical services between the two matched groups. RESULTS There were no statistically significant differences in baseline data between the two groups after matching (P>0.05). Compared with pre-quality control implementation group, the daily treatment cost (16.26 yuan vs. 24.40 yuan, P<0.001), cost-effectiveness ratio [23.12 yuan/quality-adjusted life year (QALY) vs. 32.32 yuan/QALY, P<0.001], and the incidence of general adverse drug reactions (2.50% vs. 10.00%, P=0.049) of post-quality control implementation group were decreased significantly; the utility value of the EuroQol Five-Dimensional Questionnaire (0.74± 0.06 vs. 0.71±0.07, P=0.003), the reduction in the number of medication related problems (1.0 vs. 0.5, P<0.001), the medication adherence score ([ 6.32±0.48) points vs. (6.10±0.37) points, P=0.001], and the satisfaction score ([ 92.56±1.52) points vs. (91.95±1.56) points, P=0.013] all showed significant improvements. Neither group experienced serious adverse drug reactions. There was no statistically significant difference in the incidence of new adverse reactions between the two groups (1.25% vs. 3.75%, P=0.310). CONCLUSIONS Pharmaceutical quality control can improve the quality of pharmaceutical care, and the ECHO model can quantitatively evaluate the effect of MTM services, making pharmaceutical care better priced and more adaptable to social needs, thus being worthy of promotion.
		                        		
		                        		
		                        		
		                        	
2.Identification of Alumen and Ammonium alum Based on XRD, FTIR, TG-DTA Combined with Chemometrics
Bin WANG ; Jingwei ZHOU ; Huangsheng ZHANG ; Jian FENG ; Hanxi LI ; Guorong MEI ; Jiaquan JIANG ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU ; Shilin CHEN ; Lin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):178-186
		                        		
		                        			
		                        			ObjectiveTo establish the multi-technique characteristic profiles of Alumen by X-ray diffraction(XRD), Fourier-transform infrared spectroscopy(FTIR) and thermogravimetric-differential thermal analysis(TG-DTA), and to explore the spectral characteristics for rapid identification of Alumen and its potential adulterant, Ammonium alum. MethodsA total of 27 batches of Alumen samples from 8 production regions were collected for preliminary identification based on visual characteristics. The PDF standard cards of XRD were used to differentiate Alumen from A. alum, and the XRD characteristic profiles of Alumen were established, and then the common peaks were screened. Based on hierarchical clustering analysis(HCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), the characteristic information that could be used for identification of Alumen was selected with variable importance in the projection(VIP) value>1. FTIR characteristic profiles of Alumen were established, and key wavenumbers for identification were screened by HCA and OPLS-DA with VIP value>1. Meanwhile, the thermogravimetric differences between Alumen and A. alum were analyzed by TG-DTA, and the thermogravimetric traits that could be used for identification were screened. ResultsAlumen and A. alum could not be effectively distinguished by traits alone. However, by comparing the PDF standard cards of XRD, 15 batches of Alumen and 12 batches of A. alum could be distinguished. In the XRD profiles, 10 characteristic peaks were confirmed, corresponding to diffraction angles of 14.560°, 24.316°, 12.620°, 32.122°, 17.898°, 34.642°, 27.496°, 46.048°, 40.697° and 21.973°. In the FTIR profiles, 4 wavenumber ranges(399.193-403.050, 1 186.010-1 471.420, 1 801.190-2 620.790, 3 612.020-3 997.710 cm-1) and 12 characteristic wavenumbers(1 428.994, 1 430.922, 1 432.851, 1 434.779, 1 436.708, 1 438.636, 1 440.565, 1 442.493, 1 444.422, 1 446.350, 1 448.279, 1 450.207 cm-1) were identified. In the TG-DTA profiles, there were characteristic decomposition peaks of ammonium ion and mass reduction features near 555.34 ℃ for A. alum. These characteristics could serve as important criteria for distinguishing the authenticity of Alumen. ConclusionXRD, FTIR and TG-DTA can be used to rapidly detect Alumen and A. alum, and combined with the discriminant features selected through chemometrics, the rapid and accurate identification of Alumen and A. alum can be achieved. The research findings provide new approaches for the rapid identification of Alumen. 
		                        		
		                        		
		                        		
		                        	
3.Identification of Alumen and Ammonium alum Based on XRD, FTIR, TG-DTA Combined with Chemometrics
Bin WANG ; Jingwei ZHOU ; Huangsheng ZHANG ; Jian FENG ; Hanxi LI ; Guorong MEI ; Jiaquan JIANG ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU ; Shilin CHEN ; Lin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):178-186
		                        		
		                        			
		                        			ObjectiveTo establish the multi-technique characteristic profiles of Alumen by X-ray diffraction(XRD), Fourier-transform infrared spectroscopy(FTIR) and thermogravimetric-differential thermal analysis(TG-DTA), and to explore the spectral characteristics for rapid identification of Alumen and its potential adulterant, Ammonium alum. MethodsA total of 27 batches of Alumen samples from 8 production regions were collected for preliminary identification based on visual characteristics. The PDF standard cards of XRD were used to differentiate Alumen from A. alum, and the XRD characteristic profiles of Alumen were established, and then the common peaks were screened. Based on hierarchical clustering analysis(HCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA), the characteristic information that could be used for identification of Alumen was selected with variable importance in the projection(VIP) value>1. FTIR characteristic profiles of Alumen were established, and key wavenumbers for identification were screened by HCA and OPLS-DA with VIP value>1. Meanwhile, the thermogravimetric differences between Alumen and A. alum were analyzed by TG-DTA, and the thermogravimetric traits that could be used for identification were screened. ResultsAlumen and A. alum could not be effectively distinguished by traits alone. However, by comparing the PDF standard cards of XRD, 15 batches of Alumen and 12 batches of A. alum could be distinguished. In the XRD profiles, 10 characteristic peaks were confirmed, corresponding to diffraction angles of 14.560°, 24.316°, 12.620°, 32.122°, 17.898°, 34.642°, 27.496°, 46.048°, 40.697° and 21.973°. In the FTIR profiles, 4 wavenumber ranges(399.193-403.050, 1 186.010-1 471.420, 1 801.190-2 620.790, 3 612.020-3 997.710 cm-1) and 12 characteristic wavenumbers(1 428.994, 1 430.922, 1 432.851, 1 434.779, 1 436.708, 1 438.636, 1 440.565, 1 442.493, 1 444.422, 1 446.350, 1 448.279, 1 450.207 cm-1) were identified. In the TG-DTA profiles, there were characteristic decomposition peaks of ammonium ion and mass reduction features near 555.34 ℃ for A. alum. These characteristics could serve as important criteria for distinguishing the authenticity of Alumen. ConclusionXRD, FTIR and TG-DTA can be used to rapidly detect Alumen and A. alum, and combined with the discriminant features selected through chemometrics, the rapid and accurate identification of Alumen and A. alum can be achieved. The research findings provide new approaches for the rapid identification of Alumen. 
		                        		
		                        		
		                        		
		                        	
4.The Role of Autophagy in Erectile Dysfunction
Changjing WU ; Yang XIONG ; Fudong FU ; Fuxun ZHANG ; Feng QIN ; Jiuhong YUAN
The World Journal of Men's Health 2025;43(1):28-40
		                        		
		                        			
		                        			 Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future. 
		                        		
		                        		
		                        		
		                        	
5.The Role of Autophagy in Erectile Dysfunction
Changjing WU ; Yang XIONG ; Fudong FU ; Fuxun ZHANG ; Feng QIN ; Jiuhong YUAN
The World Journal of Men's Health 2025;43(1):28-40
		                        		
		                        			
		                        			 Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future. 
		                        		
		                        		
		                        		
		                        	
6.The Role of Autophagy in Erectile Dysfunction
Changjing WU ; Yang XIONG ; Fudong FU ; Fuxun ZHANG ; Feng QIN ; Jiuhong YUAN
The World Journal of Men's Health 2025;43(1):28-40
		                        		
		                        			
		                        			 Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future. 
		                        		
		                        		
		                        		
		                        	
7.The Role of Autophagy in Erectile Dysfunction
Changjing WU ; Yang XIONG ; Fudong FU ; Fuxun ZHANG ; Feng QIN ; Jiuhong YUAN
The World Journal of Men's Health 2025;43(1):28-40
		                        		
		                        			
		                        			 Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future. 
		                        		
		                        		
		                        		
		                        	
8.The Role of Autophagy in Erectile Dysfunction
Changjing WU ; Yang XIONG ; Fudong FU ; Fuxun ZHANG ; Feng QIN ; Jiuhong YUAN
The World Journal of Men's Health 2025;43(1):28-40
		                        		
		                        			
		                        			 Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future. 
		                        		
		                        		
		                        		
		                        	
9. A network pharmacology-based approach to explore mechanism of kaempferol-7 -O -neohesperidoside against prostate cancer
Qiu-Ping ZHANG ; Zhi-Ping CHENG ; Wei XUE ; Qiao-Feng LI ; Hong-Wei GUO ; Qiu-Ping ZHANG ; Jie-Jun FU ; Hong-Wei GUO
Chinese Pharmacological Bulletin 2024;40(1):146-154
		                        		
		                        			
		                        			 Aim To explore the effect of kaempferol-7- 0-neohesperidoside (K70N) against prostate cancer (PCa) and the underlying mechanism. Methods The effect of K70N on the proliferation of PCa cell lines PC3, DU145, C4-2 and LNCaP was detected using CCK8 assay. The effect of K70N on migration ability of DU145 cells was determined by wound healing assay. The targets of K70N and PCa were screened from SuperPred and other databases. The common targets both related to K70N and PCa were obtained from the Venny online platform, a protein-protein interaction network (PPI) was constructed by the String and Cyto- scape. Meanwhile, the GO and KEGG functional enrichment were analyzed by David database. Then, a "drug-target-disease-pathway" network model was constructed. Cell cycle of PCa cells treated with K70N was analyzed by flow cytometry. The expressions of cycle-associated proteins including Skp2, p27 and p21 protein were detected by Western blot. Molecular docking between Skp2 and K70N was conducted by Sybyl X2. 0. Results K70N significantly inhibited the proliferation and migration of PCa cells. A total number of 34 drug-disease intersection targets were screened. The String results showed that Skp2 and p27, among the common targets, were the key targets of K70N for PCa treatment. Furthermore, GO and KEGG functional en-richment indicated that the mechanism was mainly related to the cell cycle. Flow cytometry showed that K70N treatment induced cell cycle arrest at the S phase. Compared with the control group, the protein expression level of Skp2 was significantly down-regulated, while the protein expression levels of p27 and p21 were up-regulated. The network molecular docking indicated that the ligand K70N had a good binding ability with the receptor Skp2. Conclusions K70N could inhibit the proliferation and migration of PCa cells, block the cell cycle in the S phase, which may be related to the regulation of cell cycle through the Skp2- p27/p21 signaling pathway. 
		                        		
		                        		
		                        		
		                        	
10.Melatonin inhibits arrhythmias induced by increased late sodium currents in ventricular myocytes
Jie WEN ; Han-feng LIU ; Yan-yan YANG ; Ze-fu ZHANG ; An-tao LUO ; Zhen-zhen CAO ; Ji-hua MA
Acta Pharmaceutica Sinica 2024;59(1):143-151
		                        		
		                        			
		                        			 Melatonin (Mel) has been shown to have cardioprotective effects, but its action on ion channels is unclear. In this experiment, we investigated the inhibitory effect of Mel on late sodium currents (INa.L) in mouse ventricular myocytes and the anti-arrhythmic effect at the organ level as well as its mechanism. The whole-cell patch clamp technique was applied to record the ionic currents and action potential (AP) in mouse ventricular myocytes while the electrocardiogram (ECG) and monophasic action potential (MAP) were recorded simultaneously in mouse hearts using a multichannel acquisition and analysis system. The results demonstrated that the half maximal inhibitory concentration (IC50) values of Mel on transient sodium current (INa.T) and specific INa.L opener 2 nmol·L-1 sea anemone toxins II (ATX II) increased INa.L were 686.615 and 7.37 μmol·L-1, respectively. Mel did not affect L-type calcium current (ICa.L), transient outward current (Ito), and AP. In addition, 16 μmol·L-1 Mel shortened ATX II-prolonged action potential duration (APD), suppressed ATX II-induced early afterdepolarizations (EADs), and significantly reduced the incidence of ventricular tachycardia (VT) and ventricular fibrillation (VF) in Langendorff-perfused mouse hearts. In conclusion, Mel exerted its antiarrhythmic effects principally by blocking INa.L, thus providing a significant theoretical basis for new clinical applications of Mel. Animal welfare and experimental process are in accordance with the regulations of the Experimental Animal Ethics Committee of Wuhan University of Science and Technology (2023130). 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail