1.Lactate metabolism and acute kidney injury.
Hui LI ; Qian REN ; Min SHI ; Liang MA ; Ping FU
Chinese Medical Journal 2025;138(8):916-924
Acute kidney injury (AKI) is a common clinically critical syndrome in hospitalized patients with high morbidity and mortality. At present, the mechanism of AKI has not been fully elucidated, and no therapeutic drugs exist. As known, glycolytic product lactate is a key metabolite in physiological and pathological processes. The kidney is an important gluconeogenic organ, where lactate is the primary substrate of renal gluconeogenesis in physiological conditions. During AKI, altered glycolysis and gluconeogenesis in kidneys significantly disturb the lactate metabolic balance, which exert impacts on the severity and prognosis of AKI. Additionally, lactate-derived posttranslational modification, namely lactylation, is novel to AKI as it could regulate gene transcription of metabolic enzymes involved in glycolysis or Warburg effect. Protein lactylation widely exists in human tissues and may severely affect non-histone functions. Moreover, the strategies of intervening lactate metabolic pathways are expected to bring a new dawn for the treatment of AKI. This review focused on renal lactate metabolism, especially in proximal renal tubules after AKI, and updated recent advances of lactylation modification, which may help to explore potential therapeutic targets against AKI.
Humans
;
Acute Kidney Injury/metabolism*
;
Lactic Acid/metabolism*
;
Animals
;
Glycolysis/physiology*
;
Gluconeogenesis/physiology*
;
Kidney/metabolism*
3.Application of sacubitril/valsartan in patients with chronic kidney disease
Yi HE ; Hui ZHONG ; Hen XUE ; Youqin YANG ; Min ZHAO ; Xiaodong CHANG ; Maoli CHEN ; Ping FU
Chinese Journal of Nephrology 2024;40(1):67-73
As a new strategy for the application of sacubitril/valsartan (LCZ696) in patients with CKD, much evidence showed that it improved the prognosis of patients with CKD. This review summarizes the efficacy and safety of sacubitril/valsartan in physiology, pathology, pharmacology and clinical application by searching Wanfang, CNKI, PubMed and other databases for related articles on the application of sacubitril/valsartan in CKD patients. Although LBQ657, the active product of sacubitril, has a high drug accumulation in patients with moderate, severe renal injury, and ESRD, it is not cleared in hemodialysis, and has very little eliminated in peritoneal dialysis, which does not affect its safety. Compared with angiotensin converting enzyme inhibitor and angiotensin receptor blocker drugs, LCZ696 could increase the blood pressure control rate, improve cardiac function, slow down the decline of glomerular filtration rate, and significantly improve cardiovascular outcomes without more adverse events. Sacubitril/valsartan can be used in all levels of CKD patients complicated with hypertension and/or heart failure, with reliable safety and tolerance.
4.YANG Zhi-Min's Experience in Differentiating and Treating Insomnia Based on the Generation,Dispersion,Divergence and Aggregation of Nutritive qi and Defensive qi
Xiao-Xuan ZHANG ; Jin-Xiu CHEN ; Shi-Ya HUANG ; Hua-Hua GUAN ; Bi-Yun XU ; Fu-Ping XU ; Jia-Min YUAN ; Zhi-Min YANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(8):2179-2183
Disharmony between nutritive qi(ying)and defensive qi(wei)is the core pathogenesis of insomnia.The normal function of ying-wei in the generation,dispersion,divergence and aggregation is the precondition for the realization of the coordination between ying and wei.The disordered function of ying-wei in the generation,dispersion,divergence and aggregation will cause the disharmony between ying and wei,and then the insomnia occurs.For the treatment of insomnia caused by the disordered function of ying-wei in the generation,Guizhi Decoction associated prescriptions are used for strengthening middle energizer and nourishing ying and wei.For the treatment of insomnia caused by the disordered function of ying-wei in the dispersion,Mahuang Decoction associated prescriptions are used to relieve the exterior and eliminate the pathogen for insomnia patients with the manifestations of the attack of exopathogens,and Xiao Chaihu Decoction associated prescriptions are used to dredge the triple energizer for insomnia patients with the dysfunction of the triple energizer.For the treatment of insomnia caused by the disordered function of ying-wei in the divergence,Rhei Radix et Rhizoma associated bitter-cold prescriptions are used to purge the interior heat for insomnia patients with abundant interior heat syndrome,Gypsum Fibrosum associated pungent-cold prescriptions are used to release muscles and clear heat for insomnia patients with the interior heat complicated by exterior syndrome,Natrii Sulfas Exsiccatus associated salty-cold prescriptions are used to clear heat,moisten dryness and dissipate the masses for insomnia patients with interior heat complicated by dryness syndrome,sour-cold medicines are used to clear heat and remove retained water,supplement deficiency and relieve exterior for insomnia patients with interior heat complicated by water-retention syndrome,deficiency syndrome and exterior syndrome,and Ophiopogonis Radix associated prescriptions and Lillli Bulbus associated prescriptions are used to clear heat and nourish ying for insomnia patients with the consumption of ying and yin.For the treatment of insomnia caused by the disordered function of ying-wei in the aggregation,the compatibility of Poria and Cinnamomi Ramulus is used for warming yang and resolving fluid retention in patients with fluid retention,Taohong Siwu Decoction associated prescriptions are used to activate blood and remove stasis in patients with predominance of blood stasis syndrome,the compatibility of Poria and Paeoniae Radix Alba are used to treat retained water and blood stasis in patients with water-blood co-morbidity.Treating insomnia caused by disharmony between ying and wei from the perspective of the function of ying-wei in the generation,dispersion,divergence and aggregation is aimed at the core pathogenesis of insomnia,which makes the treatment easy to be carried out,and can provide reference for clinical differentiation and treatment of insomnia.
5.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
6.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
7.Agrimoniae Herba-Coptidis Rhizoma inhibits angiogenesis in colorectal cancer inflammatory microenvironment based on network pharmacology and experiment validation.
Xin-Ling SHEN ; Hai-Yan PENG ; Huang-Jie FU ; Ya-Ping HE ; Zhi-Yu LI ; Min-Yan HOU ; Shu-Juan ZHANG ; Han XIONG
China Journal of Chinese Materia Medica 2024;49(21):5762-5770
This study aims to investigate the effect and mechanism of the herb pair Agrimoniae Herba-Coptidis Rhizoma in inhibiting angiogenesis in the colorectal cancer inflammatory microenvironment by using the method of network pharmacology and the zebrafish model. The method of network pharmacology was employed to obtain the active components, potential core targets, and signaling pathways regulated by the herb pair in inhibiting angiogenesis in the inflammatory microenvironment of colorectal cancer, on the basis of which the underlying mechanism was predicted. The zebrafish model of colorectal cancer was established, and the inflammatory microenvironment was modeled. The effects of different concentrations of the herb pair on the area, number, and length of intersegmental vessels(ISVs) of the zebrafish model were observed. Western blot and real-time quantitative PCR were employed to measure the protein and mRNA levels, respectively, of vascular endothelial growth factor A(VEGFA), vascular epidermal growth factor receptor 2(VEGFR2, also known as kdrl, Flk1), and vascular epidermal growth factor receptor 3(VEGFR3, also known as Flt4). A total of 18 active components and 488 potential targets of Agrimoniae Herba-Coptidis Rhizoma were predicted, and 108 common targets were shared by the herb pair and the disease. According to the results of KEGG pathway enrichment analysis, the angiogenesis-related factors VEGFA, kdrl, and Flt4 in the VEGFA/VEGFR2 signaling pathway were selected for verification. The zebrafish experiment showed that compared with the blank group, the model group showed increased area, number, and length of ISVs in the inflammatory microenvironment. Compared with the model group, the herb pair decreased the area, number, and length of ISVs in a concentration-dependent manner. Compared with the blank group, the model group showed up-regulated protein and mRNA levels of VEGFA, kdrl, and Flt4 in the inflammatory microenvironment. Compared with the model group, the herb pair down-regulated the protein and mRNA levels of VEGFA, kdrl, and Flt4 in a concentration-dependent manner. The results indicated that in the colorectal cancer inflammatory microenvironment, the herb pair Agrimoniae Herba-Coptidis Rhizoma could inhibit angiogenesis via multiple components, targets, and pathways. The anti-angiogenesis effect might be related to the down-regulation of the expression levels of angiogenesis-related factors VEGFA, kdrl, and Flt4 in the VEGFA/VEGFR2 signaling pathway.
Zebrafish
;
Animals
;
Drugs, Chinese Herbal/pharmacology*
;
Network Pharmacology
;
Colorectal Neoplasms/metabolism*
;
Neovascularization, Pathologic/drug therapy*
;
Humans
;
Vascular Endothelial Growth Factor A/metabolism*
;
Tumor Microenvironment/drug effects*
;
Angiogenesis Inhibitors/pharmacology*
;
Vascular Endothelial Growth Factor Receptor-2/metabolism*
;
Signal Transduction/drug effects*
;
Coptis chinensis
;
Inflammation/drug therapy*
;
Angiogenesis
8.Chemical constituents from whole herb of Hedyotis scandens.
Yu-Jun WANG ; Ju-Min HUANG ; Chun WEN ; Zi-Shuo ZHOU ; Qiao-Qiao FENG ; Chang-Hua HU ; Pei-Fu ZHOU ; Guo-Ping YIN
China Journal of Chinese Materia Medica 2023;48(22):6082-6087
This study aimed to investigate the chemical constituents in the water extract of the whole herb of Hedyotis scandens by silica gel, ODS, and MCI column chromatographies together with preparative high-performance liquid chromatography(HPLC). The structures of isolated constituents were identified by NMR, HR-ESI-MS, etc. Thirteen compounds were isolated and identified as methyl 4-benzoyloxy-3-methoxybenzeneacetate(1), 4-benzoyloxy-3-methoxybenzeneacetic acid(2), 3-(4-hydroxy-3-methoxyphenyl)-propanoic acid(3), salicylic acid(4), 3-hydroxy-4-methoxypyridine(5), syringic acid(6), hydroxycinnamic acid(7),(R)-6-methyl-4,6-bis(4-methylpent-3-enyl)cyclohexa-1,3-dienecarbaldehyde(8), 1,2-bis(4-hydroxy-3-methoxyphenyl)-1,3-propanediol(9), 1H-indole-3-carboxaldehyde(10), isoscopoletin(11), syringaresinol(12), and pinoresinol(13). Among them, compounds 1 and 2 were new phenolic acid compounds, compounds 3-5, 8-11, and 13 were isolated from this genus for the first time, and compounds 6, 7, and 12 were obtained from H. scandens for the first time. The activity test showed that compounds 1 and 10 had a certain inhibitory effect on Mycobacterium smegmatis, with MIC_(50) values of 58.5 and 33.3 μg·mL~(-1), respectively.
Hedyotis/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Magnetic Resonance Spectroscopy
;
Salicylic Acid
9. Research of pharmacokinetics of thalidomide in SD rats with inflammatory bowel disease
Ya-Gang LI ; Fu-Lin JIANG ; Yi-Ping LI ; Min HUANG ; Guo-Ping ZHONG ; Ya-Gang LI ; Fu-Lin JIANG ; Min HUANG ; Guo-Ping ZHONG
Chinese Pharmacological Bulletin 2023;39(2):252-257
Aim To investigate the absorption of thalidomide in inflammatory bowel disease(IBD)SD rats compared with healthy rats to provide a basis for the safety and efficacy of thalidomide in clinical practice. Method The IBD rat model was induced by the 2, 4, 6-trinitrobenzene sulfonic acid, by which the rats were continuously intervened for six days. The general state and disease activity index of the rats were recorded every day. The rats in IBD group after modeling and control group were administered with thalidomide at a dose of 10 mg·kg-1. The blood sample of the rats was collected at different time points. After a comprehensive evaluation of morphological and histopathological results, the samples of rats with IBD were determined by proven high performance liquid chromatography-mass spectrometry,and the pharmacokinetic parameters were calculated and compared with the healthy rats. Results The body weight of rats in IBD group was obviously lower than that in control group and the disease activity index, score of colonic macroscopic morphous and histopathology were obviously higher than those in control group. The success rate of modeling was 62.5%. The pharmacokinetic results showed that the Cmax(P<0.05)and AUC(P<0.01)of the IBD group both increased by 2 to 3 times, but there was no significant difference in t1/2,Tmax,MRT and other parameters. Conclusions The rate and extent of oral thalidomide absorption of rats in the model of inflammatory bowel disease significantly increase compared to those of healthy rats, which may provide new considerations for clinical practice of thalidomide in the treatment of IBD.
10.Incidence and prognosis of olfactory and gustatory dysfunctions related to infection of SARS-CoV-2 Omicron strain: a national multi-center survey of 35 566 population.
Meng Fan LIU ; Rui Xia MA ; Xian Bao CAO ; Hua ZHANG ; Shui Hong ZHOU ; Wei Hong JIANG ; Yan JIANG ; Jing Wu SUN ; Qin Tai YANG ; Xue Zhong LI ; Ya Nan SUN ; Li SHI ; Min WANG ; Xi Cheng SONG ; Fu Quan CHEN ; Xiao Shu ZHANG ; Hong Quan WEI ; Shao Qing YU ; Dong Dong ZHU ; Luo BA ; Zhi Wei CAO ; Xu Ping XIAO ; Xin WEI ; Zhi Hong LIN ; Feng Hong CHEN ; Chun Guang SHAN ; Guang Ke WANG ; Jing YE ; Shen Hong QU ; Chang Qing ZHAO ; Zhen Lin WANG ; Hua Bin LI ; Feng LIU ; Xiao Bo CUI ; Sheng Nan YE ; Zheng LIU ; Yu XU ; Xiao CAI ; Wei HANG ; Ru Xin ZHANG ; Yu Lin ZHAO ; Guo Dong YU ; Guang Gang SHI ; Mei Ping LU ; Yang SHEN ; Yu Tong ZHAO ; Jia Hong PEI ; Shao Bing XIE ; Long Gang YU ; Ye Hai LIU ; Shao wei GU ; Yu Cheng YANG ; Lei CHENG ; Jian Feng LIU
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(6):579-588
Objective: This cross-sectional investigation aimed to determine the incidence, clinical characteristics, prognosis, and related risk factors of olfactory and gustatory dysfunctions related to infection with the SARS-CoV-2 Omicron strain in mainland China. Methods: Data of patients with SARS-CoV-2 from December 28, 2022, to February 21, 2023, were collected through online and offline questionnaires from 45 tertiary hospitals and one center for disease control and prevention in mainland China. The questionnaire included demographic information, previous health history, smoking and alcohol drinking, SARS-CoV-2 vaccination, olfactory and gustatory function before and after infection, other symptoms after infection, as well as the duration and improvement of olfactory and gustatory dysfunction. The self-reported olfactory and gustatory functions of patients were evaluated using the Olfactory VAS scale and Gustatory VAS scale. Results: A total of 35 566 valid questionnaires were obtained, revealing a high incidence of olfactory and taste dysfunctions related to infection with the SARS-CoV-2 Omicron strain (67.75%). Females(χ2=367.013, P<0.001) and young people(χ2=120.210, P<0.001) were more likely to develop these dysfunctions. Gender(OR=1.564, 95%CI: 1.487-1.645), SARS-CoV-2 vaccination status (OR=1.334, 95%CI: 1.164-1.530), oral health status (OR=0.881, 95%CI: 0.839-0.926), smoking history (OR=1.152, 95%CI=1.080-1.229), and drinking history (OR=0.854, 95%CI: 0.785-0.928) were correlated with the occurrence of olfactory and taste dysfunctions related to SARS-CoV-2(above P<0.001). 44.62% (4 391/9 840) of the patients who had not recovered their sense of smell and taste also suffered from nasal congestion, runny nose, and 32.62% (3 210/9 840) suffered from dry mouth and sore throat. The improvement of olfactory and taste functions was correlated with the persistence of accompanying symptoms(χ2=10.873, P=0.001). The average score of olfactory and taste VAS scale was 8.41 and 8.51 respectively before SARS-CoV-2 infection, but decreased to3.69 and 4.29 respectively after SARS-CoV-2 infection, and recovered to 5.83and 6.55 respectively at the time of the survey. The median duration of olfactory and gustatory dysfunctions was 15 days and 12 days, respectively, with 0.5% (121/24 096) of patients experiencing these dysfunctions for more than 28 days. The overall self-reported improvement rate of smell and taste dysfunctions was 59.16% (14 256/24 096). Gender(OR=0.893, 95%CI: 0.839-0.951), SARS-CoV-2 vaccination status (OR=1.334, 95%CI: 1.164-1.530), history of head and facial trauma(OR=1.180, 95%CI: 1.036-1.344, P=0.013), nose (OR=1.104, 95%CI: 1.042-1.171, P=0.001) and oral (OR=1.162, 95%CI: 1.096-1.233) health status, smoking history(OR=0.765, 95%CI: 0.709-0.825), and the persistence of accompanying symptoms (OR=0.359, 95%CI: 0.332-0.388) were correlated with the recovery of olfactory and taste dysfunctions related to SARS-CoV-2 (above P<0.001 except for the indicated values). Conclusion: The incidence of olfactory and taste dysfunctions related to infection with the SARS-CoV-2 Omicron strain is high in mainland China, with females and young people more likely to develop these dysfunctions. Active and effective intervention measures may be required for cases that persist for a long time. The recovery of olfactory and taste functions is influenced by several factors, including gender, SARS-CoV-2 vaccination status, history of head and facial trauma, nasal and oral health status, smoking history, and persistence of accompanying symptoms.
Female
;
Humans
;
Adolescent
;
SARS-CoV-2
;
Smell
;
COVID-19/complications*
;
Cross-Sectional Studies
;
COVID-19 Vaccines
;
Incidence
;
Olfaction Disorders/etiology*
;
Taste Disorders/etiology*
;
Prognosis

Result Analysis
Print
Save
E-mail