1.Knowledge and consumption of fruits and vegetables of selected public and private senior high school students in Imus City, Cavite
Georrgia N. Gonzales ; Aimee Sheree A. Barrion ; Ma. Cristina L. Lanorio
Acta Medica Philippina 2024;58(2):69-79
Background:
The 2019 Expanded National Nutrition Survey results showed that the contribution of fruits and
vegetables (FV) in the one-day food intake of adolescents only accounted for 2.6% and 5.9%, respectively. Numerous literatures also stated that insufficient intake of FV is associated with the development of most non-communicable diseases.
Objectives:
This study was undertaken to compare the knowledge and consumption of FV between selected
respondents from public and private SHS in Imus City.
Methods:
The study used a descriptive research design, and convenience sampling was done to gather respondents. A self-administered questionnaire was developed and the level of knowledge on FV was classified into low, fair, and good. In the evaluation of FV amount consumption, the Daily Nutrition Guide Pyramid for Teens was used. The data were reported in mean, mode, and percentages.
Results:
More public SHS (49%) obtained a good level of knowledge on nutrient contents of FV, and consumed fruits (61%) more than the recommended daily serving. While more private SHS (96%) had a good level of knowledge of its health benefits but consumed vegetables (67%) less than the recommended daily serving. Their most consumed vegetables were dahon ng sili and garlic. The most consumed fruits were Indian mango and pear. Squash (47%) was the most liked vegetable by both groups. The majority of public SHS identified banana (37%) as their most liked fruit while it was mango (22%) for the majority of private SHS. Public SHS respondents were also recorded to have a lower average estimated family expenditure on FV.
Conclusion
The study concluded that both public and private SHS do not consume adequate amounts of FV despite their good level of knowledge of its nutrients and health benefits.
Knowledge
;
Economics
;
Fruit
;
Vegetables
2.Genome-wide association analysis of agronomic traits related to eggplant fruits: a review.
Cheng LI ; Ting YANG ; Binxian ZHUANG ; Yongxian WEN
Chinese Journal of Biotechnology 2024;40(1):94-103
Eggplant is an important horticultural crop and one of the most widely grown vegetables in the Solanaceae family. Eggplant fruit-related agronomic traits are complex quantitative traits with low efficiency and long cycle time for traditional breeding selection. With the rapid development of high-throughput sequencing technology and bioinformatics tools, genome-wide association study (GWAS) has shown great application potential in analyzing the genetic rules of complex agronomic traits related to eggplant fruits. This paper first reviews the progress of genome-wide association analysis in eggplant fruit shape, fruit color and other fruit-related agronomic traits. Subsequently, aiming at the problem of missing heritability, which is common in the genetic studies of eggplant quantitative traits, this paper puts forward the development strategies of eggplant GWAS in the future based on the hot spots of application of four GWAS strategies in the research of agronomics traits related to eggplant fruits. Lastly, the application of GWAS strategy in the field of eggplant molecular breeding is expected to provide a theoretical basis and reference for the future use of GWAS to analyze the genetic basis of various eggplant fruit-related traits and to select fruit materials that meet consumer needs.
Solanum melongena/genetics*
;
Fruit/genetics*
;
Genome-Wide Association Study
;
Plant Breeding
;
Agriculture
;
Vegetables
3.Association between Fruit and Vegetable Intake and Arterial Stiffness: The China-PAR Project.
Shuai LIU ; Fang Chao LIU ; Jian Xin LI ; Ke Yong HUANG ; Xue Li YANG ; Ji Chun CHEN ; Jie CAO ; Shu Feng CHEN ; Jian Feng HUANG ; Chong SHEN ; Xiang Feng LU ; Dong Feng GU
Biomedical and Environmental Sciences 2023;36(12):1113-1122
OBJECTIVE:
This study aimed to investigate the association between fruit and vegetable intake and arterial stiffness.
METHODS:
We conducted a cohort-based study comprising 6,628 participants with arterial stiffness information in the Prediction for Atherosclerotic Cardiovascular Disease Risk in China (China-PAR) project. A semi-quantitative food-frequency questionnaire was used to assess baseline (2007-2008) and recent (2018-2021) fruit and vegetable intake. We assessed changes in fruit and vegetable intake from 2007-2008 to 2018-2021 in 6,481 participants. Arterial stiffness was measured using the arterial velocity-pulse index (AVI) and arterial pressure-volume index (API). Elevated AVI and API values were defined according to diverse age reference ranges.
RESULTS:
Multivariable-adjusted linear regression models revealed that every 100 g/d increment in fruit and vegetable intake was associated with a 0.11 decrease in AVI ( B= -0.11; 95% confidence interval [ CI]: -0.20, -0.02) on average, rather than API ( B = 0.02; 95% CI: -0.09, 0.13). The risk of elevated AVI (odds ratio [ OR] = 0.82; 95% CI: 0.70, 0.97) is 18% lower in individuals with high intake (≥ 500 g/d) than in those with low intake (< 500 g/d). Furthermore, maintaining a high intake in the past median of 11.5 years of follow-up was associated with an even lower risk of elevated AVI compared with a low intake at both baseline and follow-up ( OR = 0.64; 95% CI: 0.49, 0.83).
CONCLUSION
Fruit and vegetable intake was negatively associated with arterial stiffness, emphasizing recommendations for adherence to fruit and vegetable intake for the prevention of arterial stiffness.
Humans
;
Vascular Stiffness
;
Fruit
;
Vegetables
;
Atherosclerosis
;
China
4.Identification and expression analysis of apple PDHB-1 gene family.
Jinghua YANG ; Ju GAO ; Wenfang LI ; Ji LIU ; Jiaxing HUO ; Zhenshuo REN ; Long LI ; Baihong CHEN ; Juan MAO ; Zonghuan MA
Chinese Journal of Biotechnology 2023;39(12):4965-4981
Pyruvate dehydrogenase E1 component subunit beta-1 (PDHB-1) is a gene encoding the β-subunit of pyruvate dehydrogenase complex, which plays an important role in fruit acid accumulation. The aim of this study was to investigate the evolution characteristics of apple PDHB-1 family and its expression in apples with different acid contents. Bioinformatics analysis was performed using databases including NCBI, Pfam and software including ClustalX, MEGA, and TBtools. By combining titratable acid content determination and quantitative real-time PCR (qRT-PCR), the expression of this family genes in the peel and pulp of apple 'Asda' and 'Chengji No.1' with different acid content were obtained, respectively. The family members were mainly located in chloroplast, cytoplasm and mitochondria. α-helix and random coil were the main factors for the formation of secondary structure in this family. Tissue-specific expression profiles showed that the expression of most members were higher in fruit than in other tissues. qRT-PCR results showed that the expression profile of most members was consistent with the profile of titratable acid contents. In the peel, the expression levels of 14 members in 'Asda' apples with high acid content were significantly higher than that in 'Chengji No.1' apples with low acid content, where the expression difference of MdPDHB1-15 was the most significant. In the pulp, the expression levels of 17 members in 'Asda' apples were significantly higher than that in 'Chengji No.1' apples, where MdPDHB1-01 was the most highly expressed. It was predicted that PDHB-1 gene family in apple plays an important role in the regulation of fruit acidity.
Malus/metabolism*
;
Fruit/genetics*
;
Protein Structure, Secondary
5.Chemical constituents and their α-glucosidase inhibitory activities of seeds of Moringa oleifera.
Liang CHEN ; Yin-Zhi CEN ; Yang-Li TU ; Xiang-Jie DAI ; Yong-Jun LI ; Xiao-Sheng YANG ; Lin-Zhen LI
China Journal of Chinese Materia Medica 2023;48(17):4686-4692
The chemical constituents of the seeds of Moringa oleifera were isolated and purified by using Sephadex LH-20, Toyo-pearl HW-40F, silica gel, ODS, and MCI column chromatography. The structures of compounds were identified by high-resolution mass spectrometry, ~1H-NMR, ~(13)C-NMR, HMQC, HMBC, and ~1H-~1H COSY, as well as physicochemical properties of compounds and literature data. Twelve compounds were isolated from 30% ethanol fraction of the seeds of M. oleifera and identified as ethyl-4-O-α-L-rhamnosyl-α-L-rhamnoside(1), ethyl-3-O-α-L-rhamnosyl-α-L-rhamnoside(2),(4-hydroxybenzyl)ethyl carbamate(3),(4-aminophenyl)acetic acid(4), ethyl-α-L-rhamnoside(5), methyl-α-L-rhamnoside(6), moringapyranosyl(7), 2-[4-(α-L-rhamnosyl)phenyl]methyl acetate(8), niaziridin(9), 5-hydroxymethyl furfural(10), 4-hydroxybenzeneacetamide(11), and 4-hydroxybenzoic acid(12). Among them, compounds 1 and 2 are two new compounds, compound 3 is a new natural product, and compounds 4-5 were yielded from Moringa plant for the first time. All compounds were evaluated for α-glucosidase inhibitory activity in vitro. Compound 10 showed excellent inhibitory activity with IC_(50) of 210 μg·mL~(-1).
Moringa oleifera/chemistry*
;
alpha-Glucosidases
;
Moringa
;
Seeds
;
Plant Extracts/pharmacology*
6.Effect of sowing dates on physiological characteristics, yield, and quality of Carthamus tinctorius.
Bin MA ; Ming LI ; Yang-Mei BAO ; Hua LIU ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2023;48(18):4967-4973
A field experiment was conducted to measure the physiological characteristics, yield, active ingredient content, and other indicators of Carthamus tinctorius leaves undergoing 13 sowing date treatments. The principal component analysis(PCA) and redundancy analysis were used to analyze the correlation between these indicators to explore the effect of sowing date on the yield and active ingredient content of C. tinctorius in Liupanshan of Ningxia. The results illustrated that the early sowing in autumn and spring had significant effects on leaf photosynthetic parameters, SPAD value, antioxidant enzyme activity, nitrogen metabolism enzyme activity, filament yield, grain yield, and hydroxy safflower yellow A(HYSA) of C. tinctorius. Sowing in mid-November and late March had the best effect. Leaf transpiration rate, stomatal conductance, nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase increased by 44.9%, 52.4%, 15.9%, 60.8%, 10.3%, and 38.3%, respectively. The activities of superoxide dismutase, peroxidase, and catalase decreased by 10.8%, 4.1%, and 20.9%, respectively. The improvement of photosynthetic physiological characteristics promoted the dry matter accumulation and reproductive growth of C. tinctorius. The yield of filaments and seeds increased by 15.5% and 11.7%, and the yield of HYSA and kaempferol increased by 17.9% and 20.0%. In short, the suitable sowing date can promote the growth and development of C. tinctorius in Liupanshan of Ningxia, and significantly improve the yield and quality, which is conducive to the high quality and efficient production of C. tinctorius.
Carthamus tinctorius
;
Seeds
;
Peroxidase/metabolism*
;
Plant Leaves/metabolism*
;
Antioxidants
7.Prediction of quality markers and medicinal value of sea buckthorn leaves based on network pharmacology, content determination, and activity evaluation.
Qian HE ; Kai-Lin YANG ; Xin-Yan WU ; Bo ZHANG ; Chun-Hong ZHANG ; Chun-Nian HE ; Pei-Gen XIAO
China Journal of Chinese Materia Medica 2023;48(20):5487-5497
The leaves of sea buckthorn(Hippophae rhamnoides), considered as common food raw materials, have records of medicinal use and diverse pharmacological activities, showing a potential medicinal value. However, the active substances in the sea buckthorn leaves and their mechanisms of action remain unclear. In addition, due to the extensive source and large variety variations, the quality evaluation criteria of sea buckthorn leaves remain to be developed. To solve the problems, this study predicted the main active components, core targets, key pathways, and potential pharmacological effects of sea buckthorn leaves by network pharmacology and molecular docking. Furthermore, ultra-performance liquid chromatography with diode-array detection(UPLC-DAD) was employed to determine the content of active components and establish the chemical fingerprint, on the basis of which the quality markers of sea buckthorn leaves were predicted and then verified by the enzyme activity inhibition method. The results indicated that sea buckthorn leaves had potential therapeutic effects on a variety of digestive tract diseases, metabolic diseases, tumors, and autoimmune diseases, which were consistent with the ancient records and the results of modern pharmacological studies. The core targets of sea buckthorn leaves included PTPN11, AKT1, PIK3R1, ESR1, and SRC, which were mainly involved in the PI3K-AKT, MAPK, and HIF-1 signaling pathways. In conclusion, the active components of sea buckthorn leaves are associated with the rich flavonoids and tannins, among which quercitrin, narcissoside, and ellagic acid can be used as the quality markers of sea buckthorn leaves. The findings provide a reference for the quality control and further development and utilization of sea buckthorn leaves as medicinal materials.
Hippophae/chemistry*
;
Network Pharmacology
;
Molecular Docking Simulation
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Flavonoids/analysis*
;
Fruit/chemistry*
8.Comparison of chemical compositions of different parts of Xanthoceras sorbifolium seeds based on UHPLC-Q-Orbitrap HRMS.
Jun YUAN ; Hong-Wei ZHANG ; Zhen-Ling ZHANG ; Ya-Ning WU ; Ya-Jing LI
China Journal of Chinese Materia Medica 2023;48(23):6347-6360
Xanthoceras sorbifolium seeds have a wide range of applications in the food and pharmaceutical industries. To compare and analyze the chemical compositions of different parts of X. sorbifolium seeds and explore the potential value and research prospects of non-medicinal parts, this study used ultra-high-performance liquid chromatography quadrupole Orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) to detect the chemical composition of various parts of the seeds. A total of 82 components were preliminary identified from X. sorbifolium seeds, including 5 amino acids, 4 polyphenols, 3 phenylpropionic acids, 7 organic acids, 15 flavonoids, 6 glycosides, and 23 saponins. Mass spectrometry molecular networking(MN) analysis was conducted on the results from different parts of the seeds, revealing significant differences in the components of the seed kernel, seed coat, and seed shell. The saponins and flavonoids in the seed kernel were superior in terms of variety and content to those in the seed coat and shell. Based on the chromatographic peaks of different parts from multiple batches of samples, multivariate statistical analysis was carried out. Four differential components were determined using HPLC, and the average content of these components in the seed kernel, seed coat, and seed shell were as follows: 0.183 6, 0.887 4, and 1.440 1 mg·g~(-1) for fraxin; 0.035 8, 0.124 1, and 0.044 5 mg·g~(-1) for catechin; 0.032 9, 0.072 0, and 0.221 5 mg·g~(-1) for fraxetin; 0.435 9, 2.114 7, and 0.259 7 mg·g~(-1) for epicatechin. The results showed that catechin and fraxetin had relatively low content in all parts, while fraxin had higher content in the seed coat and seed shell, and epicatechin had higher content in the seed kernel and seed coat. Therefore, the seed coat and seed shell possess certain development value. This study provides rapid analysis and comparison of the chemical compositions of different parts of X. sorbifolium seeds, which offers an experimental basis for the research and clinical application of medicinal substances in X. sorbifolium seeds.
Chromatography, High Pressure Liquid/methods*
;
Catechin/analysis*
;
Flavonoids/analysis*
;
Seeds/chemistry*
;
Saponins/analysis*
9.Comparison of active components in different parts of Perilla frutescens and its pharmacological effects.
Liang-Qi ZHANG ; Wen-Jiao LI ; Mei-Feng XIAO
China Journal of Chinese Materia Medica 2023;48(24):6551-6571
Perilla frutescens is a widely used medicinal and edible plant with a rich chemical composition throughout its whole plant. The Chinese Pharmacopoeia categorizes P. frutescens leaves(Perillae Folium), seeds(Perillae Fructus), and stems(Perillae Caulis) as three distinct medicinal parts due to the differences in types and content of active components. Over 350 different bioactive compounds have been reported so far, including volatile oils, flavonoids, phenolic acids, triterpenes, sterols, and fatty acids. Due to the complexity of its chemical composition, P. frutescens exhibits diverse pharmacological effects, including antibacterial, anti-inflammatory, anti-allergic, antidepressant, and antitumor activities. While scholars have conducted a substantial amount of research on different parts of P. frutescens, including analysis of their chemical components and pharmacological mechanisms of action, there has yet to be a systematic comparison and summary of chemical components, pharmacological effects, and mechanisms of action. Therefore, this study overviewed the chemical composition and structures of Perillae Folium, Perillae Fructus, and Perillae Caulis, and summarized the pharmacological effects and mechanisms of P. frutescens to provide a reference for better development and utilization of this valuable plant.
Perilla frutescens/chemistry*
;
Plant Extracts/pharmacology*
;
Seeds/chemistry*
;
Fruit/chemistry*
;
Oils, Volatile/analysis*
;
Plant Leaves/chemistry*
10.Research progress of oral allergy syndrome.
Zhuang Zhuang FAN ; Zhi Yue LU ; Jian Qiu JIN
Chinese Journal of Preventive Medicine 2023;57(3):341-347
Oral allergy syndrome (OAS) is an IgE-mediated hypersensitivity. Patients with pollen allergy will experience oropharyngeal allergy after eating fresh fruits or vegetables containing homologous pathogenesis-related allergen, occasionally accompanied by systemic symptoms, it is a special type of food hypersensitivity in which respiratory allergens and food allergens are similar structurally and lead to the cross-reactivity. At present, there is little research and attention to it in China. To master the definition, epidemiological characteristics, pathological mechanism, diagnosis, prevention and treatment of OAS is very important to the prevention and control of OAS. This article reviews the research progress of OAS, providing reference and prevention basis for clinicians to improve the diagnosis and differential diagnosis of OAS.
Humans
;
Pollen
;
Food Hypersensitivity/diagnosis*
;
Rhinitis, Allergic, Seasonal/therapy*
;
Allergens
;
Fruit
;
Cross Reactions


Result Analysis
Print
Save
E-mail