1.Distributions of Visual Receptive Fields from Retinotopic to Craniotopic Coordinates in the Lateral Intraparietal Area and Frontal Eye Fields of the Macaque.
Lin YANG ; Min JIN ; Cong ZHANG ; Ning QIAN ; Mingsha ZHANG
Neuroscience Bulletin 2024;40(2):171-181
Even though retinal images of objects change their locations following each eye movement, we perceive a stable and continuous world. One possible mechanism by which the brain achieves such visual stability is to construct a craniotopic coordinate by integrating retinal and extraretinal information. There have been several proposals on how this may be done, including eye-position modulation (gain fields) of retinotopic receptive fields (RFs) and craniotopic RFs. In the present study, we investigated coordinate systems used by RFs in the lateral intraparietal (LIP) cortex and frontal eye fields (FEF) and compared the two areas. We mapped the two-dimensional RFs of neurons in detail under two eye fixations and analyzed how the RF of a given neuron changes with eye position to determine its coordinate representation. The same recording and analysis procedures were applied to the two brain areas. We found that, in both areas, RFs were distributed from retinotopic to craniotopic representations. There was no significant difference between the distributions in the LIP and FEF. Only a small fraction of neurons was fully craniotopic, whereas most neurons were between the retinotopic and craniotopic representations. The distributions were strongly biased toward the retinotopic side but with significant craniotopic shifts. These results suggest that there is only weak evidence for craniotopic RFs in the LIP and FEF, and that transformation from retinotopic to craniotopic coordinates in these areas must rely on other factors such as gain fields.
Animals
;
Macaca
;
Visual Fields
;
Frontal Lobe/physiology*
;
Eye Movements
;
Brain
2.Reshaping the Cortical Connectivity Gradient by Long-Term Cognitive Training During Development.
Tianyong XU ; Yunying WU ; Yi ZHANG ; Xi-Nian ZUO ; Feiyan CHEN ; Changsong ZHOU
Neuroscience Bulletin 2024;40(1):50-64
The organization of the brain follows a topological hierarchy that changes dynamically during development. However, it remains unknown whether and how cognitive training administered over multiple years during development can modify this hierarchical topology. By measuring the brain and behavior of school children who had carried out abacus-based mental calculation (AMC) training for five years (starting from 7 years to 12 years old) in pre-training and post-training, we revealed the reshaping effect of long-term AMC intervention during development on the brain hierarchical topology. We observed the development-induced emergence of the default network, AMC training-promoted shifting, and regional changes in cortical gradients. Moreover, the training-induced gradient changes were located in visual and somatomotor areas in association with the visuospatial/motor-imagery strategy. We found that gradient-based features can predict the math ability within groups. Our findings provide novel insights into the dynamic nature of network recruitment impacted by long-term cognitive training during development.
Child
;
Humans
;
Cognitive Training
;
Magnetic Resonance Imaging
;
Brain
;
Brain Mapping
;
Motor Cortex
3.Theta Oscillations Support Prefrontal-hippocampal Interactions in Sequential Working Memory.
Minghong SU ; Kejia HU ; Wei LIU ; Yunhao WU ; Tao WANG ; Chunyan CAO ; Bomin SUN ; Shikun ZHAN ; Zheng YE
Neuroscience Bulletin 2024;40(2):147-156
The prefrontal cortex and hippocampus may support sequential working memory beyond episodic memory and spatial navigation. This stereoelectroencephalography (SEEG) study investigated how the dorsolateral prefrontal cortex (DLPFC) interacts with the hippocampus in the online processing of sequential information. Twenty patients with epilepsy (eight women, age 27.6 ± 8.2 years) completed a line ordering task with SEEG recordings over the DLPFC and the hippocampus. Participants showed longer thinking times and more recall errors when asked to arrange random lines clockwise (random trials) than to maintain ordered lines (ordered trials) before recalling the orientation of a particular line. First, the ordering-related increase in thinking time and recall error was associated with a transient theta power increase in the hippocampus and a sustained theta power increase in the DLPFC (3-10 Hz). In particular, the hippocampal theta power increase correlated with the memory precision of line orientation. Second, theta phase coherences between the DLPFC and hippocampus were enhanced for ordering, especially for more precisely memorized lines. Third, the theta band DLPFC → hippocampus influence was selectively enhanced for ordering, especially for more precisely memorized lines. This study suggests that theta oscillations may support DLPFC-hippocampal interactions in the online processing of sequential information.
Adult
;
Female
;
Humans
;
Young Adult
;
Epilepsy
;
Hippocampus
;
Memory, Short-Term
;
Mental Recall
;
Prefrontal Cortex
;
Theta Rhythm
;
Male
4.Study on after-effect of electroacupuncture with different time intervals on corticospinal excitability in primary motor cortex.
Meng-Meng XIE ; Zi-Zhen CHEN ; Wei-Li CHENG ; Jian-Peng HUANG ; Neng-Gui XU ; Jian-Hua LIU
Chinese Acupuncture & Moxibustion 2023;43(11):1239-1245
OBJECTIVES:
To compare the effects of electroacupuncture (EA) with different time intervals on corticospinal excitability of the primary motor cortex (M1) and the upper limb motor function in healthy subjects and observe the after-effect rule of acupuncture.
METHODS:
Self-comparison before and after intervention design was adopted. Fifteen healthy subjects were included and all of them received three stages of trial observation, namely EA0 group (received one session of EA), EA6h group (received two sessions of EA within 1 day, with an interval of 6 h) and EA48h group (received two sessions of EA within 3 days, with an interval of 48 h). The washout period among stages was 1 week. In each group, the needles were inserted perpendicularly at Hegu (LI 4) on the left side, 23 mm in depth and at a non-acupoint, 0.5 cm nearby to the left side of Hegu (LI 4), separately. Han's acupoint nerve stimulator (HANS-200A) was attached to these two needles, with continuous wave and the frequency of 2 Hz. The stimulation intensity was exerted higher than the exercise threshold (local muscle twitching was visible, and pain was tolerable by healthy subjects, 1-2 mA ). The needles were retained for 30 min. Using the single pulse mode of transcranial magnetic stimulation (TMS) technique, before the first session of EA (T0) and at the moment (T1), in 2 h (T2) and 24 h (T3) after the end of the last session of EA, on the left first dorsal interosseous muscle, the amplitude, latency (LAT), resting motor threshold (rMT) of motor evoked potentials (MEPs) and the completion time of grooved pegboard test (GPT) were detected. Besides, in the EA6h group, TMS was adopted to detect the excitability of M1 (amplitude, LAT and rMT of MEPs) before the last session of EA (T0*).
RESULTS:
The amplitude of MEPs at T1 and T2 in the EA0 group, at T0* in the EA6h group and at T1, T2 and T3 in the EA48h group was higher when compared with the value at T0 in each group separately (P<0.001). At T1, the amplitude of MEPs in the EA0 group and the EA48h group was higher than that in the EA6h group (P<0.001, P<0.01); at T2, it was higher in the EA0 group when compared with that in the EA6h group (P<0.01); at T3, the amplitude in the EA0 group and the EA6h group was lower than that of the EA48h group (P<0.001). The LAT at T1 was shorter than that at T0 in the three groups (P<0.05), and the changes were not obvious at the rest time points compared with that at T0 (P > 0.05). The GPT completion time of healthy subjects in the EA0 group and the EA48h group at T1, T2 and T3 was reduced in comparison with that at T0 (P<0.001). The completion time at T3 was shorter than that at T0 in the EA6h group (P<0.05); at T2, it was reduced in the EA48h group when compared with that of the EA6h group (P<0.05). There were no significant differences in rMT among the three groups and within each group (P>0.05).
CONCLUSIONS
Under physiological conditions, EA has obvious after-effect on corticospinal excitability and upper limb motor function. The short-term interval protocol (6 h) blocks the after-effect of EA to a certain extent, while the long-term interval protocol (48 h) prolongs the after-effect of EA.
Humans
;
Electroacupuncture
;
Motor Cortex/physiology*
;
Transcranial Magnetic Stimulation/methods*
;
Upper Extremity
;
Exercise
;
Muscle, Skeletal/physiology*
6.Shared and distinct abnormalities of brain magnetization transfer ratio in schizophrenia and major depressive disorder: a comparative voxel-based meta-analysis.
Huan LAN ; Xueling SUO ; Chao ZUO ; Weishi NI ; Song WANG ; Graham J KEMP ; Qiyong GONG
Chinese Medical Journal 2023;136(23):2824-2833
BACKGROUND:
Patients with schizophrenia (SCZ) and major depressive disorder (MDD) share significant clinical overlap, although it remains unknown to what extent this overlap reflects shared neural profiles. To identify the shared and specific abnormalities in SCZ and MDD, we performed a whole-brain voxel-based meta-analysis using magnetization transfer imaging, a technique that characterizes the macromolecular structural integrity of brain tissue in terms of the magnetization transfer ratio (MTR).
METHODS:
A systematic search based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was conducted in PubMed, EMBASE, International Scientific Index (ISI) Web of Science, and MEDLINE for relevant studies up to March 2022. Two researchers independently screened the articles. Rigorous scrutiny and data extraction were performed for the studies that met the inclusion criteria. Voxel-wise meta-analyses were conducted using anisotropic effect size-signed differential mapping with a unified template. Meta-regression was used to explore the potential effects of demographic and clinical characteristics.
RESULTS:
A total of 15 studies with 17 datasets describing 365 SCZ patients, 224 MDD patients, and 550 healthy controls (HCs) were identified. The conjunction analysis showed that both disorders shared higher MTR than HC in the left cerebellum ( P =0.0006) and left fusiform gyrus ( P =0.0004). Additionally, SCZ patients showed disorder-specific lower MTR in the anterior cingulate/paracingulate gyrus, right superior temporal gyrus, and right superior frontal gyrus, and higher MTR in the left thalamus, precuneus/cuneus, posterior cingulate gyrus, and paracentral lobule; and MDD patients showed higher MTR in the left middle occipital region. Meta-regression showed no statistical significance in either group.
CONCLUSIONS
The results revealed a structural neural basis shared between SCZ and MDD patients, emphasizing the importance of shared neural substrates across psychopathology. Meanwhile, distinct disease-specific characteristics could have implications for future differential diagnosis and targeted treatment.
Humans
;
Depressive Disorder, Major/drug therapy*
;
Schizophrenia/pathology*
;
Brain/pathology*
;
Prefrontal Cortex
;
Frontal Lobe
;
Magnetic Resonance Imaging/methods*
7.Research progress on the effects of childhood obstructive sleep apnea syndrome on cognition and brain functions.
Yu-Lin WANG ; Jing-Qi YANG ; De-Bo DONG ; Zhi-Hui HE ; Xu LEI
Acta Physiologica Sinica 2023;75(4):575-586
Obstructive sleep apnea syndrome (OSAS), a prevalent sleep disorder in children, is characterized by recurring upper airway obstruction during sleep. OSAS in children can cause intermittent hypoxia and sleep fragmentation, ultimately affect brain development and further lead to cognitive impairment if lack of timely effective intervention. In recent years, magnetic resonance imaging (MRI) and electroencephalogram (EEG) have been employed to investigate brain structure and function abnormalities in children with OSAS. Previous studies have indicated that children with OSAS showed extensive gray and white matter damage, abnormal brain function in regions such as the frontal lobe and hippocampus, as well as a significant decline in general cognitive function and executive function. However, the existing studies mainly focused on the regional activity, and the mechanism of pediatric OSAS affecting brain networks remains unknown. Moreover, it's unclear whether the alterations in brain structure and function are associated with their cognitive impairment. In this review article, we proposed two future research directions: 1) future studies should utilize the multimodal neuroimaging techniques to reveal the alterations of brain networks organization underlying pediatric OSAS; 2) further investigation is necessary to explore the relationship between brain network alteration and cognitive dysfunction in children with OSAS. With these efforts, it will be promising to identify the neuroimaging biomarkers for monitoring the brain development of children with OSAS as well as aiding its clinical diagnosis, and ultimately develop more effective strategies for intervention, diagnosis, and treatment.
Humans
;
Child
;
Sleep Apnea, Obstructive/complications*
;
Cognition
;
Hypoxia/complications*
;
Hippocampus
;
Frontal Lobe
8.Effects of 50 Hz electromagnetic field on rat working memory and investigation of neural mechanisms.
Longlong WANG ; Shuangyan LI ; Tianxiang LI ; Weiran ZHENG ; Yang LI ; Guizhi XU
Journal of Biomedical Engineering 2023;40(6):1135-1141
With the widespread use of electrical equipment, cognitive functions such as working memory (WM) could be severely affected when people are exposed to 50 Hz electromagnetic fields (EMF) for long term. However, the effects of EMF exposure on WM and its neural mechanism remain unclear. In the present paper, 15 rats were randomly assigned to three groups, and exposed to an EMF environment at 50 Hz and 2 mT for a different duration: 0 days (control group), 24 days (experimental group I), and 48 days (experimental group II). Then, their WM function was assessed by the T-maze task. Besides, their local field potential (LFP) in the media prefrontal cortex (mPFC) was recorded by the in vivo multichannel electrophysiological recording system to study the power spectral density (PSD) of θ and γ oscillations and the phase-amplitude coupling (PAC) intensity of θ-γ oscillations during the T-maze task. The results showed that the PSD of θ and γ oscillations decreased in experimental groups I and II, and the PAC intensity between θ and high-frequency γ (hγ) decreased significantly compared to the control group. The number of days needed to meet the task criterion was more in experimental groups I and II than that of control group. The results indicate that long-term exposure to EMF could impair WM function. The possible reason may be the impaired communication between different rhythmic oscillations caused by a decrease in θ-hγ PAC intensity. This paper demonstrates the negative effects of EMF on WM and reveals the potential neural mechanisms from the changes of PAC intensity, which provides important support for further investigation of the biological effects of EMF and its mechanisms.
Humans
;
Rats
;
Animals
;
Memory, Short-Term/physiology*
;
Electromagnetic Fields/adverse effects*
;
Prefrontal Cortex
;
Cognition
9.Study on effects of 40 Hz light flicker stimulation on spatial working memory in rats and its neural mechanism.
Longlong WANG ; Shuangyan LI ; Runze LI ; Guizhi XU
Journal of Biomedical Engineering 2023;40(6):1142-1151
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment, with the predominant clinical diagnosis of spatial working memory (SWM) deficiency, which seriously affects the physical and mental health of patients. However, the current pharmacological therapies have unsatisfactory cure rates and other problems, so non-pharmacological physical therapies have gradually received widespread attention. Recently, a novel treatment using 40 Hz light flicker stimulation (40 Hz-LFS) to rescue the cognitive function of model animals with AD has made initial progress, but the neurophysiological mechanism remains unclear. Therefore, this paper will explore the potential neural mechanisms underlying the modulation of SWM by 40 Hz-LFS based on cross-frequency coupling (CFC). Ten adult Wistar rats were first subjected to acute LFS at frequencies of 20, 40, and 60 Hz. The entrainment effect of LFS with different frequency on neural oscillations in the hippocampus (HPC) and medial prefrontal cortex (mPFC) was analyzed. The results showed that acute 40 Hz-LFS was able to develop strong entrainment and significantly modulate the oscillation power of the low-frequency gamma (lγ) rhythms. The rats were then randomly divided into experimental and control groups of 5 rats each for a long-term 40 Hz-LFS (7 d). Their SWM function was assessed by a T-maze task, and the CFC changes in the HPC-mPFC circuit were analyzed by phase-amplitude coupling (PAC). The results showed that the behavioral performance of the experimental group was improved and the PAC of θ-lγ rhythm was enhanced, and the difference was statistically significant. The results of this paper suggested that the long-term 40 Hz-LFS effectively improved SWM function in rats, which may be attributed to its enhanced communication of different rhythmic oscillations in the relevant neural circuits. It is expected that the study in this paper will build a foundation for further research on the mechanism of 40 Hz-LFS to improve cognitive function and promote its clinical application in the future.
Humans
;
Adult
;
Rats
;
Animals
;
Memory, Short-Term/physiology*
;
Rats, Wistar
;
Neurodegenerative Diseases
;
Hippocampus
;
Prefrontal Cortex
10.The Secondary Motor Cortex-striatum Circuit Contributes to Suppressing Inappropriate Responses in Perceptual Decision Behavior.
Jing LIU ; Dechen LIU ; Xiaotian PU ; Kexin ZOU ; Taorong XIE ; Yaping LI ; Haishan YAO
Neuroscience Bulletin 2023;39(10):1544-1560
The secondary motor cortex (M2) encodes choice-related information and plays an important role in cue-guided actions. M2 neurons innervate the dorsal striatum (DS), which also contributes to decision-making behavior, yet how M2 modulates signals in the DS to influence perceptual decision-making is unclear. Using mice performing a visual Go/No-Go task, we showed that inactivating M2 projections to the DS impaired performance by increasing the false alarm (FA) rate to the reward-irrelevant No-Go stimulus. The choice signal of M2 neurons correlated with behavioral performance, and the inactivation of M2 neurons projecting to the DS reduced the choice signal in the DS. By measuring and manipulating the responses of direct or indirect pathway striatal neurons defined by M2 inputs, we found that the indirect pathway neurons exhibited a shorter response latency to the No-Go stimulus, and inactivating their early responses increased the FA rate. These results demonstrate that the M2-to-DS pathway is crucial for suppressing inappropriate responses in perceptual decision behavior.
Mice
;
Animals
;
Motor Cortex
;
Corpus Striatum/physiology*
;
Neostriatum
;
Neurons/physiology*
;
Reaction Time

Result Analysis
Print
Save
E-mail