1.Restoration of FMRP expression in adult V1 neurons rescues visual deficits in a mouse model of fragile X syndrome.
Chaojuan YANG ; Yonglu TIAN ; Feng SU ; Yangzhen WANG ; Mengna LIU ; Hongyi WANG ; Yaxuan CUI ; Peijiang YUAN ; Xiangning LI ; Anan LI ; Hui GONG ; Qingming LUO ; Desheng ZHU ; Peng CAO ; Yunbo LIU ; Xunli WANG ; Min-Hua LUO ; Fuqiang XU ; Wei XIONG ; Liecheng WANG ; Xiang-Yao LI ; Chen ZHANG
Protein & Cell 2022;13(3):203-219
Many people affected by fragile X syndrome (FXS) and autism spectrum disorders have sensory processing deficits, such as hypersensitivity to auditory, tactile, and visual stimuli. Like FXS in humans, loss of Fmr1 in rodents also cause sensory, behavioral, and cognitive deficits. However, the neural mechanisms underlying sensory impairment, especially vision impairment, remain unclear. It remains elusive whether the visual processing deficits originate from corrupted inputs, impaired perception in the primary sensory cortex, or altered integration in the higher cortex, and there is no effective treatment. In this study, we used a genetic knockout mouse model (Fmr1KO), in vivo imaging, and behavioral measurements to show that the loss of Fmr1 impaired signal processing in the primary visual cortex (V1). Specifically, Fmr1KO mice showed enhanced responses to low-intensity stimuli but normal responses to high-intensity stimuli. This abnormality was accompanied by enhancements in local network connectivity in V1 microcircuits and increased dendritic complexity of V1 neurons. These effects were ameliorated by the acute application of GABAA receptor activators, which enhanced the activity of inhibitory neurons, or by reintroducing Fmr1 gene expression in knockout V1 neurons in both juvenile and young-adult mice. Overall, V1 plays an important role in the visual abnormalities of Fmr1KO mice and it could be possible to rescue the sensory disturbances in developed FXS and autism patients.
Animals
;
Disease Models, Animal
;
Fragile X Mental Retardation Protein/metabolism*
;
Fragile X Syndrome/metabolism*
;
Humans
;
Mice
;
Mice, Knockout
;
Neurons/metabolism*
2.Clinical practice guidelines for Fragile X syndrome.
CLINICAL GENETICS GROUP OF MEDICAL GENETICIST BRANCH OF CHINESE MEDICAL DOCTOR ASSOCIATION ; CLINICAL GENETICS GROUP OF MEDICAL GENETICS BRANCH OF CHINESE MEDICAL ASSOCIATION ; GENETIC DISEASE PREVENTION AND CONTROL GROUP OF PROFESSIONAL COMMITTEE FOR BIRTH DEFECT PREVENTION AND CONTROL OF CHINESE PREVENTIVE MEDICINE ASSOCIATION ; Ranhui DUAN ; Guangxu LI ; Hui XI ; Ying PENG ; Lingqian WU
Chinese Journal of Medical Genetics 2022;39(11):1181-1186
Fragile X syndrome (FXS) is the most common monogenic form of inherited intellectual disability and autism spectrum disorder (ASD). More than 99% of individuals with FXS are caused by the unstable expansion of CGG repeats located within the 5'-untranslated region of the FMR1 gene. The clinical features of FXS include various degrees of cognitive deficit, physical, behavioral and psychiatric problems. Early treatment and prevention from having further affected children can be guided by molecular genetic testing of the FMR1 gene. The following guideline has combined the relevant research, guidelines and consensus worldwide, and summarized the genetic knowledge and clinical treatment for FXS in order to achieve a standardized diagnosis, treatment and prevention for patients and families affected by this disease.
Child
;
Humans
;
Autism Spectrum Disorder/therapy*
;
Fragile X Mental Retardation Protein/genetics*
;
Fragile X Syndrome/therapy*
;
Intellectual Disability/genetics*
3.Analysis of FMR1 gene CGG repeats among patients with diminished ovarian reserve.
Wenbin HE ; Weilin TANG ; Yi LIAO ; Wen LI ; Fei GONG ; Guangxiu LU ; Ge LIN ; Juan DU ; Yueqiu TAN
Chinese Journal of Medical Genetics 2021;38(4):343-346
OBJECTIVE:
To explore the correlation between Fragile X mental retardation gene-1 (FMR1) gene CGG repeats with diminished ovarian reserve (DOR).
METHODS:
For 214 females diagnosed with DOR, DNA was extracted from peripheral blood samples. FMR1 gene CGG repeats were determined by PCR and capillary electrophoresis.
RESULTS:
Three DOR patients were found to carry FMR1 premutations, and one patient was found to carry gray zone FMR1 repeats. After genetic counseling, one patient and the sister of another patient, both carrying FMR1 permutations, conceived naturally. Prenatal diagnosis showed that both fetuses have carried FMR1 permutations.
CONCLUSION
FMR1 gene permutation may be associated with DOR. Determination of FMR1 gene CGG repeats in DOR patients can provide a basis for genetic counseling and guidance for reproduction.
Female
;
Fragile X Mental Retardation Protein/metabolism*
;
Fragile X Syndrome/genetics*
;
Humans
;
Ovarian Diseases
;
Ovarian Reserve/genetics*
;
Primary Ovarian Insufficiency/genetics*
;
Trinucleotide Repeats/genetics*
4.Analysis and prenatal diagnosis of FMR1 gene mutations among patients with unexplained mental retardation.
Shikun LUO ; Wenbin HE ; Yi LIAO ; Weilin TANG ; Xiurong LI ; Liang HU ; Juan DU ; Qianjun ZHANG ; Yueqiu TAN ; Ge LIN ; Wen LI
Chinese Journal of Medical Genetics 2021;38(5):439-445
OBJECTIVE:
To analyze the (CGG)n repeats of FMR1 gene among patients with unexplained mental retardation.
METHODS:
For 201 patients with unexplained mental retardation, the (CGG)n repeats of the FMR1 gene were analyzed by PCR and FragilEase
RESULTS:
For the 201 patients with unexplained mental retardation, 15 were identified with full mutations of the FMR1 gene. The prevalence of fragile X syndrome (FXS) in patients with unexplained mental retardation was determined as 7.5% (15/201). Prenatal diagnosis was provided for 6 pregnant women with pre- or full mutations. Analysis revealed that women with mental retardation and full FMR1 mutations exhibited a skewed XCI pattern with primary expression of the X chromosome carrying the mutant allele.
CONCLUSION
FXS has a high incidence among patients with unexplained mental retardation. Analysis of FMR1 gene (CGG)n repeats in patients with unexplained mental retardation can facilitate genetic counseling and prenatal diagnosis for their families. FMR1 gene (CGG)n repeats screening should be recommended for patients with unexplained mental retardation.
Female
;
Fragile X Mental Retardation Protein/genetics*
;
Fragile X Syndrome/genetics*
;
Humans
;
Intellectual Disability/genetics*
;
Mutation
;
Pregnancy
;
Prenatal Diagnosis
5.Significance and case analysis of FMR1 mutation screening during early and middle pregnancy.
Qinying CAO ; Weihong MU ; Donglan SUN ; Junzhen ZHU ; Jun GE ; Yuanyuan PENG ; Jing ZHANG
Chinese Journal of Medical Genetics 2021;38(5):450-453
OBJECTIVE:
To screen for mutations of fragile X mental retardation 1 (FMR1) gene during early and middle pregnancy and provide prenatal diagnosis for those carrying high-risk CGG trinucleotide expansions.
METHODS:
Peripheral blood samples of 2316 pregnant women at 12 to 21(+6) gestational weeks were collected for the extraction of genomic DNA. CGG repeats of the FMR1 gene were detected by fluorescence PCR and capillary electrophoresis. Genetic counseling and prenatal diagnosis were provided for 3 women carrying the premutations.
RESULTS:
The carrier rate of CGG repeats of the FMR1 gene was 1 in 178 for the intermediate type and 1 in 772 for the premutation types. The highest frequency allele of CGG was 29 repeats, which accounted for 49.29%, followed by 30 repeats (28.56%) and 36 repeats (8.83%). In case 1, the fetus had a karyotype of 45,X, in addition with premutation type of CGG expansion of the FMR1 gene. Following genetic counseling, the couple chose to terminate the pregnancy through induced labor. The numbers of CGG repeats were respectively 70/- and 29/30 for the husband and wife. In case 2, amniocentesis was performed at 20 weeks of gestation. The number of CGG repeats of the FMR1 gene was 29/-. No abnormality was found in the fetal karyotype and chromosomal copy number variations. The couple chose to continue with the pregnancy. Case 3 refused prenatal diagnosis after genetic counseling and gave birth to a girl at full term, who had a birth weight of 2440 g and no obvious abnormality found during follow-up.
CONCLUSION
Pregnant women should be screened for FMR1 gene mutations during early and middle pregnancy, and those with high-risk CGG expansions should undergo prenatal diagnosis, genetic counseling and family study.
DNA Copy Number Variations
;
Female
;
Fragile X Mental Retardation Protein/genetics*
;
Fragile X Syndrome/genetics*
;
Genetic Counseling
;
Humans
;
Mutation
;
Pregnancy
;
Trinucleotide Repeat Expansion
;
Trinucleotide Repeats
6.Prenatal diagnosis for 30 women carrying a FMR1 mutation.
Wen HUANG ; Jin XUE ; Huaixing KANG ; Xinxin GUAN ; Yanling TENG ; Lingqian WU ; Ranhui DUAN
Chinese Journal of Medical Genetics 2019;36(9):866-869
OBJECTIVE:
To determine the CGG repeat number and methylation status of FMR1 gene for fetuses whose mothers have carried a FMR1 mutation.
METHODS:
For 30 pregnant women, the fetal CGG repeat number was determined with a GC-rich PCR system by using chorionic villus, amniotic fluid or umbilical blood samples. The methylation status of the FMR1 gene was confirmed with Southern blotting.
RESULTS:
In total 30 prenatal diagnoses were performed for 29 carriers of FMR1 gene mutations and 1 with FMR1 gene deletion mosaicism. Three fetuses were found to carry premutations, 9 were with full mutations and 1 with mosaicism of premutation and full mutations. Eighteen fetuses were normal.
CONCLUSION
Considering the genetic complexity of Fragile X syndrome (FXS), single method may not suffice accurate determination of their genetic status. The pitfalls and technical limitations of protocols requires adoption of personalized strategy for its prenatal diagnosis.
Female
;
Fragile X Mental Retardation Protein
;
genetics
;
Fragile X Syndrome
;
diagnosis
;
Heterozygote
;
Humans
;
Mutation
;
Pregnancy
;
Prenatal Diagnosis
7.Fragile X-Associated Tremor/Ataxia Syndrome: An Illustrative Case
Chaewon LEE ; Kye Won PARK ; Nari CHOI ; Ho Sung RYU ; Sun Ju CHUNG
Journal of Movement Disorders 2019;12(3):184-186
No abstract available.
Fragile X Tremor Ataxia Syndrome
;
Tremor
;
Fragile X Syndrome
;
Ataxia
9.Report on the External Quality Assessment Scheme for Molecular Diagnostics in Korea (2017).
Man Jin KIM ; Mi Hye YOON ; Ji Yun SONG ; Sung Im CHO ; Sung Sup PARK ; Moon Woo SEONG
Journal of Laboratory Medicine and Quality Assurance 2018;40(4):199-210
Quality control for genetic analysis has become more important with a drastic increase in testing volume and clinical demands. The molecular diagnostics division of the Korean Association of Quality Assurance for Clinical Laboratory conducted two trials in 2017 on the basis of molecular diagnostics surveys, involving 53 laboratories. The molecular diagnostics surveys included 37 tests: gene rearrangement tests for leukemia (BCR-ABL1, PML-RARA, AML1-ETO, and TEL-AML1), genetic tests for Janus kinase 2, FMS-like tyrosine kinase 3-internal tandem duplication, FMS-like tyrosine kinase 3-tyrosine kinase domain, nucleophosmin, cancer-associated genes (KRAS, EGFR, KIT, and BRAF), hereditary breast and ovarian cancer genes (BRCA1 and BRCA2), Li-Fraumeni syndrome (TP53), Wilson disease (ATP7B), achondroplasia (FGFR3), hearing loss and deafness (GJB2), Avellino (TGFBI), multiple endocrine neoplasia 2 (RET), Huntington disease, spinocerebellar ataxia, spinal and bulbar muscular atrophy, mitochondrial encephalopathy with lactic acidosis and stroke-like episodes, myoclonic epilepsy ragged red fibre, Leber hereditary optic neuropathy, Prader-raderd Angelman syndrome, Duchenne muscular dystrophy, spinal muscular atrophy, fragile X syndrome, apolipoprotein E genotyping, methylenetetrahydrofolate reductase genotyping, and ABO genotyping. Molecular genetic surveys revealed excellent results for most participants. The external quality assessment program for genetic analysis in 2017 proved useful for continuous education and the evaluation of quality improvement.
Achondroplasia
;
Acidosis, Lactic
;
Angelman Syndrome
;
Apolipoproteins
;
Brain Diseases
;
Breast
;
Deafness
;
Education
;
Epilepsies, Myoclonic
;
Fragile X Syndrome
;
Gene Rearrangement
;
Hearing Loss
;
Hepatolenticular Degeneration
;
Huntington Disease
;
Janus Kinase 2
;
Korea*
;
Laboratory Proficiency Testing
;
Leukemia
;
Li-Fraumeni Syndrome
;
Methylenetetrahydrofolate Reductase (NADPH2)
;
Molecular Biology
;
Multiple Endocrine Neoplasia
;
Muscular Atrophy, Spinal
;
Muscular Disorders, Atrophic
;
Muscular Dystrophy, Duchenne
;
Optic Atrophy, Hereditary, Leber
;
Ovarian Neoplasms
;
Pathology, Molecular*
;
Phosphotransferases
;
Quality Control
;
Quality Improvement
;
Spinocerebellar Ataxias
;
Vascular Endothelial Growth Factor Receptor-1
10.Spontaneous Coronary Artery Dissection in a female patient with fragile X syndrome.
Hyun Young PARK ; Jin Man CHO ; Dong Hee KIM ; Chang Bum PARK ; Chong Jin KIM
Kosin Medical Journal 2017;32(2):240-243
We report a case of Spontaneous coronary artery dissection associated with fragile X syndrome. The relationship between fragile X syndrome and Spontaneous coronary artery dissection is unclear. However, More research will need about the causes and treatment of Spontaneous coronary artery dissection.
Acute Coronary Syndrome
;
Coronary Vessels*
;
Female*
;
Fragile X Syndrome*
;
Humans

Result Analysis
Print
Save
E-mail