1.Time dependent expression profiling of PTK2B and its relationship with Aβ, Tau and LRP-1 in hippocampus and blood of APPswe/PS1dE9 double-transgenic mouse.
Kai-Min HAO ; Zhen LIU ; Hao-Yu WANG ; Wen-Xiu QI
Chinese Journal of Applied Physiology 2022;38(1):17-24
		                        		
		                        			
		                        			Objective: To uncover the time-dependent expression pattern of ptk2b gene and ptk2b-encoded protein, protein tyrosine kinase 2 beta(PTK2B), in the brain tissues of transgenic animal models of Alzheimer's disease (AD) and its relationship with the levels of Aβ1-42, phosphorylation of Tau (p-Tau) and low density lipoprotein receptor-related protein-1(LRP-1) in blood and brain tissues. Methods: In this study, 5-, 10- and 15-month-old APPswe/PS1dE9 double-transgenic mice harboring the genotype of AD confirmed by the gene test were divided into the 5-, 10- and 15-month-old experiment groups, and simultaneously, age-matched C57BL/6J mice were placed into the corresponding control groups, with 8 mice in each group. All mice were subjected to the Morris Water Maze for test of cognitive and behavioral ability. Expression profiles of PTK2B, Aβ1-42, p-Tau/Tau and LRP-1 in the hippocampus or blood of mice were quantified by using the immunohistochemistry staining, Western blot or enzyme-linked immunosorbent assay (ELISA), while the mRNA expression of ptk2b in the hippocampus was quantified by using the real-time quantitative polymerase chain reaction (qRT-PCR). Results: Results of experiment groups demonstrated that as mice aged, the expression levels of PTK2B, ptk2b mRNA, Aβ1-42 and p-Tau/Tau in the hippocampus were increased, and the expression of LRP-1 was decreased gradually. While in the blood, the level of Aβ1-42 was decreased, and the cognitive and behavioral ability was decreased in an age-dependent manner (all P< 0.05). However, comparisons among the control groups, only the age-dependent downregulation of LRP-1 were observed in hippocampus(P<0.05), but other indicators had no significant differences (P>0.05). Conclusion: In the hippocampus of APP/PS1 double-transgenic mice, the expressions of PTK2B, Aβ1-42 and p-Tau/Tau are upregulated, LRP-1 is downregulated, while cognitive and behavioral ability is decreased, and such changes are presented in a time-dependent manner.
		                        		
		                        		
		                        		
		                        			Alzheimer Disease/metabolism*
		                        			;
		                        		
		                        			Amyloid beta-Peptides
		                        			;
		                        		
		                        			Amyloid beta-Protein Precursor/genetics*
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Focal Adhesion Kinase 2/metabolism*
		                        			;
		                        		
		                        			Hippocampus/metabolism*
		                        			;
		                        		
		                        			Low Density Lipoprotein Receptor-Related Protein-1
		                        			;
		                        		
		                        			Maze Learning
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Mice, Transgenic
		                        			;
		                        		
		                        			RNA, Messenger
		                        			
		                        		
		                        	
2.Extracellular signal regulated kinase 5 promotes cell migration, invasion and lung metastasis in a FAK-dependent manner.
Weiwei JIANG ; Fangfang CAI ; Huangru XU ; Yanyan LU ; Jia CHEN ; Jia LIU ; Nini CAO ; Xiangyu ZHANG ; Xiao CHEN ; Qilai HUANG ; Hongqin ZHUANG ; Zi-Chun HUA
Protein & Cell 2020;11(11):825-845
		                        		
		                        			
		                        			This study was designed to evaluate ERK5 expression in lung cancer and malignant melanoma progression and to ascertain the involvement of ERK5 signaling in lung cancer and melanoma. We show that ERK5 expression is abundant in human lung cancer samples, and elevated ERK5 expression in lung cancer was linked to the acquisition of increased metastatic and invasive potential. Importantly, we observed a significant correlation between ERK5 activity and FAK expression and its phosphorylation at the Ser
		                        		
		                        		
		                        		
		                        			A549 Cells
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			Epithelial-Mesenchymal Transition/genetics*
		                        			;
		                        		
		                        			Focal Adhesion Kinase 1/metabolism*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lung Neoplasms/pathology*
		                        			;
		                        		
		                        			MAP Kinase Signaling System
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mitogen-Activated Protein Kinase 7/metabolism*
		                        			;
		                        		
		                        			Neoplasm Invasiveness
		                        			;
		                        		
		                        			Neoplasm Metastasis
		                        			;
		                        		
		                        			Neoplasm Proteins/metabolism*
		                        			
		                        		
		                        	
3.Comparative analysis of a panel of biomarkers related to protein phosphatase 2A between laryngeal squamous cell carcinoma tissues and adjacent normal tissues.
Han-Ying WANG ; Hui YUAN ; Jing-Hui LIU ; Bei-Lei WANG ; Kai-Lun XU ; Pu HUANG ; Zhi-Hong LIN ; Li-Hong XU
Journal of Zhejiang University. Science. B 2019;20(9):776-780
		                        		
		                        			
		                        			Laryngeal squamous cell carcinoma (LSCC) is the most common type of head and neck squamous cell carcinoma (HNSCC) worldwide. Protein phosphatase 2A (PP2A) dysfunction has been widely reported in a broad range of malignancies due to its distinctive role in miscellaneous cellular processes. However, it is poorly understood whether aberrant alterations of PP2A are involved in the network of oncogenic events in LSCC. Here, we detected a panel of PP2A-associated proteins using western blot in both laryngeal squamous cell carcinoma tissues and paired adjacent normal tissues from patients (Data S1). We found that phospho-PP2A/C (Y307), α4, cancerous inhibitor of protein phosphatase 2A (CIP2A), Akt, ezrin, phospho-ezrin (T567), 14-3-3, and focal adhesion kinase (FAK) showed increased expression levels in carcinoma tissues relative to normal tissues, while phospho-Akt (T308) showed decreased levels. Our study, thus, provides a rationale for targeting PP2A to develop novel therapies and proposes a combination of interrelated biomarkers for the diagnostic evaluation and prognosis prediction in LSCC.
		                        		
		                        		
		                        		
		                        			Autoantigens/metabolism*
		                        			;
		                        		
		                        			Biomarkers, Tumor/metabolism*
		                        			;
		                        		
		                        			Carcinoma, Squamous Cell/metabolism*
		                        			;
		                        		
		                        			Case-Control Studies
		                        			;
		                        		
		                        			Cytoskeletal Proteins/metabolism*
		                        			;
		                        		
		                        			Focal Adhesion Kinase 1/metabolism*
		                        			;
		                        		
		                        			Gene Expression Profiling
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Intracellular Signaling Peptides and Proteins/metabolism*
		                        			;
		                        		
		                        			Laryngeal Neoplasms/metabolism*
		                        			;
		                        		
		                        			Larynx/metabolism*
		                        			;
		                        		
		                        			Membrane Proteins/metabolism*
		                        			;
		                        		
		                        			Phosphorylation
		                        			;
		                        		
		                        			Protein Phosphatase 2/metabolism*
		                        			
		                        		
		                        	
4.Cucurbitacin B suppresses metastasis mediated by reactive oxygen species (ROS) via focal adhesion kinase (FAK) in breast cancer MDA-MB-231 cells.
Wei-Wei LUO ; Wen-Wen ZHAO ; Jin-Jian LU ; Yi-Tao WANG ; Xiu-Ping CHEN
Chinese Journal of Natural Medicines (English Ed.) 2018;16(1):10-19
		                        		
		                        			
		                        			Metastasis is responsible for the majority of cancer-related deaths and prevention of metastasis remains a big challenge for cancer therapy. Cucurbitacin B (Cuc B) is a natural triterpenoid with potent anticancer activities while its effect on metastasis remains unclear. In the present study, the inhibitory effect and mechanisms of Cuc B on metastasis were investigated in MDA-MB-231 breast cancer cells. The cells were treated with or without Cuc B, and the cytotoxicity was determined by MTT assay. The effect of Cuc B on metastasis was evaluated with wound healing, transwell, and adhesion assays. Furthermore, the adhesion of cancer cells to endothelial cells was determined. The protein expression was determined by Western blotting. Cuc B (< 100 nmol·L) showed no obvious cytotoxicity to MDA-MB-231 cells, but significantly inhibited migration, invasion, and adhesion to Matrigel, fibronectin, type I collagen, and endothelial cells. Cuc B dramatically inhibited the phosphorylation of focal adhesion kinase (FAK) and paxillin in dose- and time-dependent manners. Furthermore, Cuc B induced intracellular reactive oxygen species (ROS) generation, which could be reduced by N-acetyl-l-cysteine (NAC). In addition, NAC pretreatment could reverse Cuc B-induced suppression of migration and adhesion, expression of FAK, but showed no effect on paxillin expression. In summary, Cuc B suppressed ROS-dependent metastasis through FAK pathway in breast cancer MDA-MB-231 cells, demonstrating novel mechanisms for the anticancer effects of Cuc B.
		                        		
		                        		
		                        		
		                        			Acetylcysteine
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Antineoplastic Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Breast Neoplasms
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			Cell Adhesion
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Collagen Type I
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Dose-Response Relationship, Drug
		                        			;
		                        		
		                        			Down-Regulation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Fibronectins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Focal Adhesion Kinase 1
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Neoplasm Invasiveness
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Neoplasm Metastasis
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Paxillin
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Phosphorylation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Reactive Oxygen Species
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Triterpenes
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
5.Angiotensin II Modulates p130Cas of Podocytes by the Suppression of AMP-Activated Protein Kinase.
Tae Sun HA ; Hye Young PARK ; Su Bin SEONG ; Hee Yul AHN
Journal of Korean Medical Science 2016;31(4):535-541
		                        		
		                        			
		                        			Angiotensin II (Ang II) induces the pathological process of vascular structures, including renal glomeruli by hemodynamic and nonhemodynamic direct effects. In kidneys, Ang II plays an important role in the development of proteinuria by the modification of podocyte molecules. We have previously found that Ang II suppressed podocyte AMP-activated protein kinase (AMPK) via Ang II type 1 receptor and MAPK signaling pathway. In the present study, we investigated the roles of AMPK on the changes of p130Cas of podocyte by Ang II. We cultured mouse podocytes and treated them with various concentrations of Ang II and AMPK-modulating agents and analyzed the changes of p130Cas by confocal imaging and western blotting. In immunofluorescence study, Ang II decreased the intensity of p130Cas and changed its localization from peripheral cytoplasm into peri-nuclear areas in a concentrated pattern in podocytes. Ang II also reduced the amount of p130Cas in time and dose-sensitive manners. AMPK activators, metformin and AICAR, restored the suppressed and mal-localized p130Cas significantly, whereas, compound C, an AMPK inhibitor, further aggravated the changes of p130Cas. Losartan, an Ang II type 1 receptor antagonist, recovered the abnormal changes of p130Cas suppressed by Ang II. These results suggest that Ang II induces the relocalization and suppression of podocyte p130Cas by the suppression of AMPK via Ang II type 1 receptor, which would contribute to Ang II-induced podocyte injury.
		                        		
		                        		
		                        		
		                        			AMP-Activated Protein Kinases/antagonists & inhibitors/chemistry/*metabolism
		                        			;
		                        		
		                        			Aminoimidazole Carboxamide/analogs & derivatives/pharmacology
		                        			;
		                        		
		                        			Angiotensin II/*pharmacology
		                        			;
		                        		
		                        			Angiotensin II Type 1 Receptor Blockers/pharmacology
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Blotting, Western
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cell Nucleus/metabolism
		                        			;
		                        		
		                        			Crk-Associated Substrate Protein/*metabolism
		                        			;
		                        		
		                        			Cytoplasm/metabolism
		                        			;
		                        		
		                        			Focal Adhesion Kinase 1/metabolism
		                        			;
		                        		
		                        			Losartan/pharmacology
		                        			;
		                        		
		                        			Metformin/pharmacology
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Microscopy, Confocal
		                        			;
		                        		
		                        			Podocytes/cytology/drug effects/metabolism
		                        			;
		                        		
		                        			Protein Kinase Inhibitors/*pharmacology
		                        			;
		                        		
		                        			Ribonucleotides/pharmacology
		                        			;
		                        		
		                        			Signal Transduction/*drug effects
		                        			
		                        		
		                        	
6.Marsdenia tenacissima extract suppresses A549 cell migration through regulation of CCR5-CCL5 axis, Rho C, and phosphorylated FAK.
Sen-Sen LIN ; Fang-Fang LI ; Li SUN ; Wei FAN ; Ming GU ; Lu-Yong ZHANG ; Song QIN ; Sheng-Tao YUAN
Chinese Journal of Natural Medicines (English Ed.) 2016;14(3):203-209
		                        		
		                        			
		                        			Marsdenia tenacissima, a traditional Chinese medicine, is long been used to treat various diseases including asthma, cancer, trachitis, tonsillitis, pharyngitis, cystitis, and pneumonia. Although Marsdenia tenacissima has been demonstrated to have strong anti-tumor effects against primary tumors, its effect on cancer metastasis remains to be defined, and the molecular mechanism underlying the anti-metastatic effect is unknown. In the present study, we investigated the effects of XAP (an extract of Marsdenia tenacissima) on A549 lung cancer cell migration and explored the role of CCR5-CCL5 axis in the anti-metastatic effects of XAP. Our resutls showed that XAP inhibited A549 lung cancer cell migration and invasion in a dose-dependent manner. The protein levels of CCR5, but not CCR9 and CXCR4, were decreased by XAP. The secretion of CCL5, the ligand of CCR5, was reduced by XAP. XAP down-regulated Rho C expression and FAK phosphorylation. In conclusion, XAP inhibited A549 cell migration and invasion through down-regulation of CCR5-CCL5 axis, Rho C, and FAK.
		                        		
		                        		
		                        		
		                        			A549 Cells
		                        			;
		                        		
		                        			Antineoplastic Agents, Phytogenic
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Chemokine CCL5
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Focal Adhesion Kinase 1
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lung Neoplasms
		                        			;
		                        		
		                        			Marsdenia
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Phosphorylation
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Receptors, CCR5
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			rho GTP-Binding Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			rhoC GTP-Binding Protein
		                        			
		                        		
		                        	
7.Sphingosine kinase 1 enhances the proliferation and invasion of human colon cancer LoVo cells through up-regulating FAK pathway and the expression of ICAM-1 and VCAM-1.
Shi-quan LIU ; Ying-jie SU ; Jie-an HUANG ; Meng-bin QIN ; Guo-du TANG
Chinese Journal of Oncology 2013;35(5):331-336
OBJECTIVETo investigate the effects of sphingosine kinase 1 (SphK1) on the proliferation, migration and invasion of human colon cancer LoVo cells, and to explore the related mechanisms.
METHODSHuman colon cancer LoVo cells were divided into three groups: phorbol 12-myristate 13-acetate (PMA) was used to induce the activation of SphK1 in the PMA group, N,N-dimethylsphingosine (DMS) used to suppress the activity of SphK1 in DMS group, and the cells treated with equal amount of 0.9 % NaCl instead of drugs served as the control group. The activity of SphK1 was assayed by autoradiography, the cell proliferation was assessed by MTT assay, cell migration and invasion were examined by Boyden chamber assay, concentrations of sICAM-1 and sVCAM-1 were assayed by ELISA, and RT-PCR and Western blot were used to evaluate the mRNA and protein expression in the cells.
RESULTSThe activity of SphK1 was efficiently induced by PMA and significantly suppressed by DMS. PMA induced cell proliferation in a time- and dose-dependent manner. On the contrast, DMS suppressed cell proliferation in a time- and dose-dependent manner. After treating with PMA, the number of migrating and invasing cells were increased to 143.36 ± 8.73 and 118.46 ± 6.25, significantly higher than those of the control group (75.48 ± 6.12 and 64.19 ± 5.36). After treating with DMS, the number of migrating and invasing cells were decreased to 38.57 ± 3.24 and 32.48 ± 4.27, significantly lower than those of the control group (P < 0.01). The relative expression levels of FAK, ICAM-1 and VCAM-1 mRNA in the PMA group were 0.82 ± 0.06, 0.74 ± 0.05 and 0.89 ± 0.09, and those in the DMS group were 0.23 ± 0.02, 0.26 ± 0.03 and 0.37 ± 0.04, with significant differences between the PMA, DMS and control groups (P < 0.01). Compared with the control group, the relative expression levels of FAK and p-FAK proteins in the PMA group (0.52 ± 0.06 and 0.51 ± 0.06) were significantly elevated, and those of the DMS group (0.20 ± 0.03 and 0.09 ± 0.02) were significantly decreased. In addition, the concentrations of sICAM-1 and sVCAM-1 were significantly elevated with the activation of SphK1. On the contrary, those of the DMS group were significantly reduced with the suppression of SphK1 (Both P < 0.01).
CONCLUSIONSSphK1 may enhance the proliferation, migration and invasion of colon cancer LoVo cells through activating FAK pathway and up-regulating the expression of ICAM-1 and VCAM-1.
Cell Line, Tumor ; Cell Movement ; drug effects ; Cell Proliferation ; drug effects ; Colonic Neoplasms ; enzymology ; metabolism ; pathology ; Dose-Response Relationship, Drug ; Enzyme Inhibitors ; pharmacology ; Focal Adhesion Kinase 1 ; genetics ; metabolism ; Humans ; Intercellular Adhesion Molecule-1 ; genetics ; metabolism ; Neoplasm Invasiveness ; Phosphorylation ; drug effects ; Phosphotransferases (Alcohol Group Acceptor) ; metabolism ; RNA, Messenger ; metabolism ; Signal Transduction ; Sphingosine ; analogs & derivatives ; pharmacology ; Tetradecanoylphorbol Acetate ; pharmacology ; Vascular Cell Adhesion Molecule-1 ; genetics ; metabolism
8.Construction of stable focal adhesion kinase knockdown cell line and preliminary study of its properties.
Acta Pharmaceutica Sinica 2012;47(9):1128-1133
		                        		
		                        			
		                        			Malignant melanoma still remains to be a serious health threat. Overexpression of focal adhesion kinase (FAK) in melanoma has suggested that FAK could be a promising target for therapeutic intervention. To further investigate the function of FAK in melanoma, FAK expression was down-regulated by stable transfection of plasmid harboring FAK small interfering RNA (siRNA) into melanoma cell line. Two stable cell lines, F10-siFAK and F10-control, have been constructed and screened. Compared with the F10-control, both the mRNA and protein levels of FAK decreased significantly, and the cell cycle of F10-siFAK was arrested at G1 phase. Furthermore, the tumor growth rate of F10-siFAK cells was notably slower than that of F10-control in in vivo tumor models. These results show that FAK is an important regulatory gene in melanoma. The stable FAK-knockdown melanoma cell line is an useful tool for further investigation of FAK's function in the progression of melanoma, and also an effective means of drug screening for anti-melanoma therapeutics.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Cycle
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Down-Regulation
		                        			;
		                        		
		                        			Focal Adhesion Protein-Tyrosine Kinases
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			G1 Phase
		                        			;
		                        		
		                        			Gene Knockdown Techniques
		                        			;
		                        		
		                        			Melanoma, Experimental
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Mitogen-Activated Protein Kinase 1
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mitogen-Activated Protein Kinase 3
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Plasmids
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Transfection
		                        			
		                        		
		                        	
9.Relative analysis of OPN and its related signal molecules in hepatocellular carcinoma.
Lan ZHANG ; Hai-yu LI ; Xiao-lu YIN ; Yan-ping XU ; Yi CHEN ; Xiao-ying XIE ; Yue-fang SHEN ; Qing-hai YE ; Zheng-gang REN
Chinese Journal of Hepatology 2011;19(1):48-51
		                        		
		                        			
		                        			Osteopontin (OPN) has close relationship with metastasis in hepatocellular carcinoma but its downstream signal pathways have not been well defined in hepatocellular carcinoma. The object of this study is to identify the associated signal pathways in human HCC tissues. The expressions of OPN, intergrin aV, CD44v6, P-FAK, FAK, P-Src, Src, P-ERK and P-AKT were assayed using TMA analysis. The relationship of OPN with P-ERK, P-Src and P-AKT were explored and the role in HCC metastasis was analysed. The expression levels of OPN, intergrin aV, CD44v6, P-FAK, P-Src, Src, P-ERK and P-AKT in HCC tissue were significantly higher than that in normal tissue (P value is less than 0.05). No significant difference was found between the expression levels of FAK in HCC tissue and normal tissue (P value is more than 0.05). OPN expression was significantly associated with Integrin av (P value is less than 0.01), CD44V6 (P value is less than 0.01) and P-ERK (P value is less than 0.05) but not with P-Src, P-FAK and P-AKT (P value is more than 0.05). The expressions of P-FAK (P value is less than 0.05), P-Src (P value is less than 0.01) and P-AKT (P value is less than 0.05) were significantly associated with Integrin av and the P-FAK expression was also significantly associated with CD44V6 (P value is less than 0.01). OPN promotes HCC metastasis though Integrin av/CD44V6/MAPK pathway in human HCC.
		                        		
		                        		
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Carcinoma, Hepatocellular
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Focal Adhesion Kinase 1
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Integrin alphaVbeta3
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Liver Neoplasms
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Osteopontin
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Young Adult
		                        			
		                        		
		                        	
10.Expression of deleted in liver cancer 1 and phosphorelated focal adhesion kinase in breast cancer.
Yun FENG ; Hui-xing ZHOU ; Jun-hong LI ; Zhen-yu LI ; Wei-gang CHENG ; Meng-lin JIN ; Liang HE
Journal of Southern Medical University 2011;31(8):1448-1451
OBJECTIVETo analyze the expression of deleted in liver cancer 1 (DLC1) and phosphorelated focal adhesion kinase (p-FAK) in breast cancer tissue to further understand the molecular mechanisms of the carcinogenesis and metastasis of breast cancer.
METHODSImmunohistochemistry was employed to determine the protein level of DLC1 and p-FAK in 61 breast cancer, 30 benign breast disease and the adjacent normal breast tissues.
RESULTSThe positivity rates of DLC1 differed significantly between breast cancer, benign and normal tissues (34.43%, 80.00% and 76.67%, respectively, P<0.001). The positivity rates of p-FAK in the 3 tissues were 77.05%, 33.33% and 26.67%, also showing significant differences (P<0.001). The aberrant expression of DLC1 showed an inverse correlation to p-FAK (κ=-0.4591). Both DLC1 and p-FAK were closely correlated to the carcinogenesis, clinical stage, PR and lymphatic metastasis of breast cancer (P<0.05), but not to the patients age, pathological subtype, familial history, ER or CerbB-2 (P>0.05).
CONCLUSIONThe abnormal expression of DLC1 and p-FAK might participate in the carcinogenesis, progression, and metastasis of breast cancer. The role of DLC1 and p-FAK might be related to the regulation of progestone. DLC1 and p-FAK may serve as candidate markers for early diagnosis, prognostic evaluation and target treatment of breast cancer.
Adult ; Breast Neoplasms ; metabolism ; pathology ; Carcinoma, Ductal, Breast ; metabolism ; pathology ; Female ; Focal Adhesion Kinase 1 ; metabolism ; GTPase-Activating Proteins ; metabolism ; Humans ; Lymphatic Metastasis ; Middle Aged ; Phosphorylation ; Prognosis ; Receptors, Progesterone ; metabolism ; Tumor Suppressor Proteins ; metabolism
            
Result Analysis
Print
Save
E-mail