1.Heterocyclic compounds and phenolic glycosides from flowers of Dendrobium officinale.
Chun-Jie OUYANG ; Fang-Xin JIA ; Jia-Jia HUANG ; Si-Si ZHANG ; Chun-Hua DING ; Ling-Juan ZHU ; Xue ZHANG
China Journal of Chinese Materia Medica 2023;48(15):4115-4123
Eight heterocyclic compounds and twelve phenolic glycosides were separated from the water extract of Dendrobium officinale flowers through chromatographic techniques, such as Diaion HP-20 macroporous adsorption resin column chromatography(CC), silica gel CC, ODS CC, Sephadex LH-20 CC, and preparative high performance liquid chromatography(PHPLC). According to the spectroscopic analyses(MS, ~1H-NMR, and ~(13)C-NMR) and optical rotation data, the compounds were identified as dendrofurfural A(1), 2'-deoxyadenosine(2), 4-[2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl] butanoic acid(3), 4-[2-formyl-5-(methoxymethyl)-1H-pyrrol-1-yl] butanoic acid(4), 1-(2-hydroxyethyl)-5-(methoxymethyl)-1H-pyrrole-2-carbaldehyde(5), 5-(methoxymethyl)-1H-pyrrole-2-carbaldehyde(6), methyl 5-(hydroxymethyl)-furan-2-carboxylate(7),(S)-5-hydroxymethyl-5H-furan-2-one(8), 2-methoxyphenyl-1-O-β-D-glucopyranoside(9), arbutin(10), isotachioside(11), 2,6-dimethoxy-4-hydroxyphenol-1-O-β-D-glucopyranoside(12), orcinol glucoside(13), tachioside(14), gastrodin(15), 4-O-β-D-glucopyranosylvanillyl alcohol(16), 2,6-dimethoxy-4-hydroxymethylphenol-1-O-β-D-glucopyranoside(17), icariside D_2(18), 4-formylphenyl-β-D-glucopyranoside(19), and vanillin-4-O-β-D-glucopyranoside(20). Among them, compound 1 is a new furfural benzyl alcohol condensate, with the skeleton first found in Dendrobium. Compounds 2-9, 11, 13, and 19 are reported from Dendrobium for the first time, and compounds 14 and 18 are reported for the first time from D. officinale. Compounds 11 and 14 showed moderate DPPH radical scavenging capacity, and compounds 11-14 demonstrated potent ABTS radical scavenging capacity, possessing antioxidant activity.
Dendrobium
;
Butyric Acid
;
Glycosides/analysis*
;
Phenols/analysis*
;
Heterocyclic Compounds
;
Flowers/chemistry*
2.Quality evaluation and multi-spectral identification of origin herbs of Lonicerae Japonicae Flos based on grey correlation-TOPSIS method.
Ji-Jing DONG ; Lu-Ming QI ; Ke WANG ; Yu-Gang DING ; Yun-Tong MA
China Journal of Chinese Materia Medica 2023;48(10):2713-2724
The grey correlation-TOPSIS method was used to evaluate the quality of the origin herbs of Lonicerae Japonicae Flos, and the Fourier transform near-infrared(NIR) and mid-infrared(MIR) spectroscopy was applied to establish the identification model of origin herbs of Lonicerae Japonicae Flos by combining chemometrics and spectral fusion strategies. The content of neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, caffeic acid, secoxyloganin, isoquercitrin, isochlorogenic acid B, isochlorogenic acid A, and isochlorogenic acid C in six origin herbs of Lonicerae Japonicae Flos was determined by high-performance liquid chromatography(HPLC), and their quality was evaluated by the grey correlation-TOPSIS method. The Fourier transform NIR and MIR spectra of six origin herbs of Lonicerae Japonicae Flos(Lonicera japonica, L. macranthoides, L. hypoglauca, L. fulvotomentosa, L. confuse, and L. similis) were collected. At the same time, principal component analysis(PCA), support vector machine(SVM), and spectral data fusion technology were combined to determine the optimal identification method for the origin herbs of Lonicerae Japonicae Flos. There were differences in the quality of the origin herbs of Lonicerae Japonicae Flos. Specifically, there were significant differences between L. japonica and the other five origin herbs(P<0.01). The quality of L. similis was significantly different from that of L. fulvotomentosa, L. macranthoides, and L. hypoglauca(P=0.008, 0.027, 0.01), and there were also significant differences in the quality of L. hypoglauca and L. confuse(P=0.001). The PCA and SVM 2D models based on a single spectrum could not be used for the effective identification of the origin herbs of Lonicerae Japonicae Flos. The data fusion combined with the SVM model further improved the identification accuracy, and the identification accuracy of the mid-level data fusion reached 100%. Therefore, the grey correlation-TOPSIS method can be used to evaluate the quality of the origin herbs of Lonicerae Japonicae Flos. Based on the infrared spectral data fusion strategy and SVM chemometric model, it can accurately identify the origin herbs of Lonicerae Japonicae Flos, which can provide a new method for the origin identification of medicinal materials of Lonicerae Japonicae Flos.
Drugs, Chinese Herbal/chemistry*
;
Flowers/chemistry*
;
Quality Control
;
Lonicera/chemistry*
;
Chromatography, High Pressure Liquid/methods*
3.Effects of different drying methods on quality of male flowers of Eucommia ulmoides based on color and chemical composition.
Yu-Yao LIU ; Fu-Juan LIAO ; Yu-Shan LI ; Hong-Ping CHEN ; Fu WANG ; Yuan HU ; You-Ping LIU
China Journal of Chinese Materia Medica 2023;48(7):1876-1884
To study the effects of different drying methods on the quality of male flowers of Eucommia ulmoides(MFOEU), we treated fresh MFOEU samples with drying in the shade(DS), vacuum freeze drying(VFD), high-or low-temperature hot air drying(HTHAD, LTHAD), microwave drying(MD), and vacuum drying(VD), respectively. The color, total flavonoid content, total polysaccharide content, and main active components such as geniposide, geniposidic acid, rutin, chlorogenic acid, galuteolin, pinoresinol diglucoside, and aucubin in MFOEU were taken as the evaluation indicators. The quality of MFOEU was comprehensively evaluated by entropy weight method combined with color index method, partial least squares discriminant analysis and content clustering heat map. The experimental results showed that VFD and DS basically kept the original color of MFOEU. The MFOEU treated with MD had higher content of total polysaccharides, phenylpropanoids, lignans, and iridoids. The MFOEU treated with LTHAD had higher content of total flavonoids and that treated with VD had lower content of active components. According to the results of comprehensive evaluation, the quality of MFOEU dried with different methods followed the order of MD>HTHAD>VFD>LTHAD>DS>VD. Considering the color of MFOEU, the suitable drying methods were DS and VFD. Considering the color, active components, and economic benefits of MFOEU, MD was the suitable drying method. The results of this study are of a reference value for the determination of suitable methods for MFOEU processing in the producing areas.
Eucommiaceae/chemistry*
;
Flowers/chemistry*
;
Flavonoids/analysis*
;
Rutin/analysis*
;
Chlorogenic Acid/analysis*
4.Evaluation and optimization of content determination method of Chrysanthemi Flos in Chinese Pharmacopoeia.
Dan YANG ; Zi-Xuan NIE ; Fei TENG ; Shan-Shan LIU ; Li-Xin YANG ; Jing NIE ; Jing-Jing ZHU ; Zhi-Min WANG
China Journal of Chinese Materia Medica 2022;47(5):1286-1292
This study discovered that the resolution of 3,5-O-dicaffeoylquinic acid(isochlorogenic acid A) in the content determination method of Chrysanthemi Flos in Chinese Pharmacopoeia(ChP)(2020 edition) was poor, which affected accurate quantification. We tested the method in ChP with chromatographic columns of seven brands to clarify the problems in the existing method, optimized the chromatographic conditions by adjusting the mobile phase composition and elution ratio and replacing the chromatographic column packing, and carried out the reproducibility assay for the new method. The two methods were compared for the content determination results of Chrysanthemi Flos prepared from six different varieties. As evaluated by the resolution based on different chromatographic columns of seven brands, the existing method failed to separate isochlorogenic acid A and isochlorogenic acid D well. The peaks of the two components were not completely separated on three chromatographic columns, and isochlorogenic acid A and isochlorogenic acid D generated a co-effluent peak in the other four columns. Isochlorogenic acid A and isochlorogenic acid D could be completely separated under the optimized chromatographic conditions. The difference in the peak areas of isochlorogenic acid A+isochlorogenic acid D obtained by the optimized method and the method in ChP was not significant, with deviation less than 3.0%, which further proved that the result measured by the method in ChP was the co-effluent of isochlorogenic acid A and isochlorogenic acid D. The optimized method can ensure the accurate quantification of isochlorogenic acid A. The existing content determination method of Chrysanthemi Flos has the problem of poor resolution. It is recommended to revise the chromatographic conditions for the content determination method of Chrysanthemi Flos to improve the resolution of isochlorogenic acid A and ensure its accurate quantification.
China
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Flowers/chemistry*
;
Reproducibility of Results
5.Research progress on pesticide residues of Lonicera Japonica Flos.
Heng LU ; Bing-Qian ZHOU ; Guo-Hong YANG ; Xiao WANG ; Xiao-Bo ZHANG ; Lan-Ping GUO ; Wei LIU
China Journal of Chinese Materia Medica 2022;47(6):1453-1458
Lonicera Japonica Flos is the dried bud or nascent flower of Lonicera japonica(Caprifoliaceae). The plant suffers from various diseases and pests in the growth period and thus pesticides are often used. As a result, the resultant pesticide residues in Lonicera Japonica Flos have aroused great concern. This review summarized the investigation, detection methods, content analysis, and risk assessment of pesticide residues in Lonicera Japonica Flos since 1996, and compared the maximum residue limits among different countries and regions. The results showed that the pesticide residues were detected in Lonicera Japonica Flos from different production areas, and only some exceeded the limits. The residual pesticides have changed from organochlorines to new types such as tebuconazole and nitenpyram. The detection method has upgraded from chromatography to chromatography-mass spectrometry. Most pesticide residues will not cause health risks, except carbofuran. Pesticide residues limit the development of Lonicera Japonica Flos industry in China. In practice, we should improve the drug registration of Lonicera Japonica Flos, promote ecological prevention and control technology, and formulate and promote pesticide residue limit standard of Lonicera Japonica Flos.
Flowers/chemistry*
;
Lonicera/chemistry*
;
Mass Spectrometry
;
Pesticide Residues/analysis*
;
Pesticides/analysis*
6.Simultaneous determination of 11 active components in Lonicera japonica flowers and leaves at different development stages by HPLC-DAD.
Xiao-Ying GUO ; Yu-Wei WANG ; Xiao YU ; Ran YANG ; Ling-Na WANG ; Fang ZHANG ; Yong-Qing ZHANG
China Journal of Chinese Materia Medica 2022;47(8):2148-2157
This study aims to develop an HPLC-DAD method for simultaneous determination of 11 components(6 phenolic acids and 5 iridoids) in Lonicera japonica flowers(LjF) and leaves(LjL), and compare the content differences of LjF at different development stages, LjL at different maturity levels, and between LjF and LjL. One-way ANOVA, principal component analysis(PCA), and orthogonal partial least-squares discriminant analysis(OPLS-DA) were employed to compare the content of the 11 components. The content of total phenolic acids, total iridoid glycosides, and total 11 components in LjF showed an overall downward trend with the development of flowers. The content of total phenolic acids, total iridoid glycosides, and total 11 components in young leaves were higher than those in mature leaves. The results of PCA showed that the samples at different flowering stages had distinguishable differences in component content. The VIP value of OPLS-DA showed that isochlorogenic acid A, chlorogenic acid, and secologanic acid were the main differential components of LjF at different development stages or LjL with different maturity levels. LjF and LjL have certain similarities in chemical composition while significant differences in component content. The content of total phenolic acids in young leaves was significantly higher than that in LjF at various development stages. The content of total iridoid glycosides in young leaves was similar to that in LjF before white flower bud stage. The total content of 11 components in young leaves was significantly higher than that in LjF at green flower bud stage, before and during completely white flower bud stage. LjL have great potential for development. Follow-up research on the pharmacodynamic equivalence of LjF and LjL(especially young leaves) should be carried out to speed up the development and application of LjL.
Chromatography, High Pressure Liquid
;
Flowers/chemistry*
;
Iridoid Glycosides/analysis*
;
Lonicera/chemistry*
;
Plant Leaves/chemistry*
7.Analysis and prediction of quality markers of Lonicerae Japonicae Flos.
Yue YUAN ; Lin-Lin ZHANG ; Jian-Ting LIU ; Hong-Bing ZHANG ; Jun XU ; Tie-Jun ZHANG
China Journal of Chinese Materia Medica 2022;47(7):1730-1738
Lonicerae Japonicae Flos, as common Chinese medicine, has been used for thousands of years in the treatment of inflammation and infectious diseases with definite efficacies. The complex composition of Lonicerae Japonicae Flos results in its extensive pharmacological effects, so the assessment of its quality by only a few index components is not comprehensive. Guided by the quality marker(Q-marker), the present study comprehensively analyzed and predicted the quality connotation of Lonicerae Japonicae Flos based on the chemical composition and component transfer, the phylogenetic relationship, chemical composition effectiveness, measurability, and specificity. Chlorogenic acid, isochlorogenic acids A, B, and C, luteoloside, rutin, sweroside, and secoxyloganin were predicted as candidate Q-markers of Lonicerae Japonicae Flos.
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal/chemistry*
;
Flowers/chemistry*
;
Lonicera/chemistry*
;
Phylogeny
;
Quality Control
8.Polyhydroxylated eudesmane sesquiterpenoids and sesquiterpenoid glucoside from the flower buds of Tussilago farfara.
Yu-Peng LI ; Kang YANG ; Hui MENG ; Tao SHEN ; Hua ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(4):301-308
Chemical fractionation of the n-BuOH partition, which was generated from the EtOH extract of the flower buds of Tussilago farfara, afforded a series of polar constituents including four new sesquiterpenoids (1-4), one new sesquiterpenoid glucoside (5) and one known analogue (6) of the eudesmane type, as well as five known quinic acid derivatives (7-11). Structures of the new compounds were unambiguously characterized by detailed spectroscopic analyses, with their absolute configurations being established by X-ray crystallography, electronic circular dichroism (ECD) calculation and induced ECD experiments. The inhibitory effect of all the isolates against LPS-induced NO production in murine RAW264.7 macrophages was evaluated, with isochlorogenic acid A (7) showing significant inhibitory activity.
Animals
;
Flowers/chemistry*
;
Glucosides/pharmacology*
;
Mice
;
Sesquiterpenes/pharmacology*
;
Sesquiterpenes, Eudesmane/pharmacology*
;
Tussilago/chemistry*
9.Effect of drying processing methods on different specifications of Sophorae Flos based on comprehensive statistical analysis.
Ji-Rui WANG ; Jun TAN ; Long-Yun LI ; Xu-Hong SONG ; Gang DING ; Fang-Hong SHANG
China Journal of Chinese Materia Medica 2021;46(6):1401-1409
To investigate the effects of six common drying methods on the quality of different specifications of Sophorae Flos, in order to select their suitable drying methods. According to appearance and morphology, Sophorae Flos was divided into the following three specifications: flower bud type(HL), half-open type(BK) and blooming type(SK). All specifications of samples were treated with shade-drying method(25 ℃, natural temperature), sun-drying method, hot-air-drying method(60, 105 ℃), and drying method(60 ℃) after steaming. The contents of total flavonoids, rutin, narcissus, quercetin, isorhamnetin, and Fe~(3+) reducing ability, DPPH free radical scavenging ability, ABTS free radical scavenging ability and fluorescence recovery after photobleaching(FRAP) were detected by UV, HPLC and colorimetry, respectively. Principal component analysis(PCA), cluster analysis(CA) and correlation analysis were used to comprehensively evaluate the quality of samples. According to the results, there were significant differences in the effect of drying methods on different specifications of samples. The drying method(60 ℃) after steaming was suitable for HL and BK, while the hot-air-drying method(60 ℃) was suitable for SK. When the fresh medicinal materials could not be treated in time, they should be spread out in a cool and ventilated place. Under high and low temperature conditions, the quality of three specifications of Sophorae Flos would be reduced. The hot-air-drying method(105 ℃) and shade-drying method(25 ℃) were not suitable for the treatment of fresh flowers and flower buds of Sophora japonicus. There were obviously differences of chemical compositions and antioxidant activities among the three specifications of samples. Therefore, the specifications of medicinal materials should be controlled to ensure the uniform quality. The study provided the abundant data reference for the selection of appropriate drying methods for the three specifications of Sophorae Flos, and useful exploration for the classification and processing of medicinal materials of flowers.
Chromatography, High Pressure Liquid
;
Flavonoids/analysis*
;
Flowers/chemistry*
;
Rutin
;
Sophora
10.Changes in chemical compositions of Chrysanthemi Flos after frying and protective effects on CCl_4-induced acute liver injury in mice.
Lan-Lan FAN ; Shan-Shan ZHANG ; Meng-Xue YAO ; Yu JIANG ; Min SU ; Xiao-Li WANG ; Yan HONG ; Yan-Quan HAN
China Journal of Chinese Materia Medica 2020;45(13):3144-3154
To reveal the processing mechanism of Chrysanthemi Flos from the changes of chemical compositions after frying and its effect on the efficacy of liver protection. Ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry(UPLC-Q-TOF-MS) and ultra high performance liquid chromatography(HPLC) were used for the qualitative and quantitative researches of chemical compositions before and after Chrysanthemi Flos frying. Progenesis QI and SPSS software were used for principal component analysis(PCA), partial least squares discriminant analysis(PLS-DA), variable importance projection(VIP) analysis and t-test to identify the compositions with significant changes. Pharmacodynamics experiment was used to investigate the protective effect of crude and fried Chrysanthemi Flos on CCl_4-induced acute liver injury in mice. According to mass spectrometry data, there were 28 chemical compositions in crude and fried Chrysanthemi Flos, mainly including flavonoids and organic acids. 13 compositions such as luteolin, apigenin and luteolin glycoside were increased significantly after frying, while 7 compositions such as chlorogenic acid, luteolin-7-O-glucuronide and apigenin-7-O-glucuronide were decreased significantly after frying. Through principal component analysis, crude and fried Chrysanthemi Flos products were divided into two categories, indicating that there were internal differences in quality. The results of liver injury protection experiment in mice showed that the AST, ALT and MDA contents were significantly decreased and SOD level was increased in mice with liver injury in both the high and medium dose groups. Histopathological examination showed that crude and fried Chrysanthemi Flos can protect the liver by reducing inflammatory cell infiltration, reducing steatosis, and repairing damaged liver cells. The results of this study showed that the chemical compositions had obvious changes after frying, and both crude and fried Chrysanthemis Flos had protective effects on CCl_4-induced acute liver injury in mice. In addition, in the range of high, medium and low doses, the liver protection effect of crude and fried Chrysanthemi Flos increased with the increase of dose. The experiment results provided reference for the mechanism of fried Chrysanthemi Flos and clinical selection of processed products.
Animals
;
Chromatography, High Pressure Liquid
;
Chrysanthemum
;
Flavonoids
;
analysis
;
Flowers
;
chemistry
;
Liver
;
chemistry
;
Mice

Result Analysis
Print
Save
E-mail