1.Advances in the co-culture of microalgae with other microorganisms and applications.
Chang LI ; Wenxiang PING ; Jingping GE ; Yimeng LIN
Chinese Journal of Biotechnology 2022;38(2):518-530
Intense utilization and mining of fossil fuels for energy production have resulted in environmental pollution and climate change. Compared to fossil fuels, microalgae is considered as a promising candidate for biodiesel production due to its fast growth rate, high lipid content and no occupying arable land. However, monocultural microalgae bear high cost of harvesting, and are prone to contamination, making them incompetent compared with traditional renewable energy sources. Co-culture system induces self-flocculation, which may reduce the cost of microalgae harvesting and the possibility of contamination. In addition, the productivity of lipid and high-value by-products are higher in co-culture system. Therefore, co-culture system represents an economic, energy saving, and efficient technology. This review aims to highlight the advances in the co-culture system, including the mechanisms of interactions between microalgae and other microorganisms, the factors affecting the lipid production of co-culture, and the potential applications of co-culture system. Finally, the prospects and challenges to algal co-culture systems were also discussed.
Biofuels
;
Biomass
;
Coculture Techniques
;
Flocculation
;
Microalgae
2.Effect of RIM21 gene disruption on flocculation of lager yeast.
Xuefei ZHOU ; Jingyi SUO ; Dan HOU ; Chunfeng LIU ; Chengtuo NIU ; Feiyun ZHENG ; Qi LI ; Jinjing WANG
Chinese Journal of Biotechnology 2021;37(12):4373-4381
Lager yeast is the most popular yeast strain used for beer production in China. The flocculation of yeast plays an important role in cell separation at the end of fermentation. Therefore, appropriately enhancing the flocculation capability of the lager yeast without affecting its fermentation performance would be desirable for beer industry. Our previous study showed that the defect of gene RIM21 might contribute to the enhanced flocculation capability of a lager yeast G03. To further investigate the role of the RIM21 gene in flocculation of strain G03, this study constructed a RIM21-deleted mutant strain G03-RIM21Δ through homologous recombination. Deletion of RIM21 improved the flocculation capability of strain G03 during wort fermentation at 11 °C without changing its fermentation performance significantly. The expression of FLO5, Lg-FLO1 and some other genes involved in cell wall integrity pathway were up-regulated in strain G03-RIM21Δ. In addition, the disruption of RIM21 enhanced resistance of yeast cells to cell wall inhibitors. These results provide a basis for elucidating the flocculation mechanism of lager yeast under low-temperature fermentation conditions.
Beer
;
Fermentation
;
Flocculation
;
Receptors, Cell Surface
;
Saccharomyces/metabolism*
;
Saccharomyces cerevisiae/metabolism*
;
Saccharomyces cerevisiae Proteins/metabolism*
3.LAMMER Kinase Lkh1 Is an Upstream Regulator of Prk1-Mediated Non-Sexual Flocculation in Fission Yeast.
Yoon Dong PARK ; Soo Jeong KWON ; Kyung Sook BAE ; Hee Moon PARK
Mycobiology 2018;46(3):236-241
The cation-dependent galactose-specific flocculation activity of the Schizosaccharomyces pombe null mutant of lkh1⁺, the gene encoding LAMMER kinase homolog, has previously been reported by our group. Here, we show that disruption of prk1⁺, another flocculation associated regulatory kinase encoding gene, also resulted in cation-dependent galactose-specific flocculation. Deletion of prk1 increased the flocculation phenotype of the lkh1⁺ null mutant and its overexpression reversed the flocculation of cells caused by lkh1 deletion. Transcript levels of prk1⁺ were also decreased by lkh1⁺ deletion. Cumulatively, these results indicate that Lkh1 is one of the negative regulators acting upstream of Prk1, regulating non-sexual flocculation in fission yeast.
Flocculation*
;
Phenotype
;
Phosphotransferases*
;
Schizosaccharomyces*
4.Improvement of acetic acid tolerance and fermentation performance of industrial Saccharomyces cerevisiae by overexpression of flocculent gene FLO1 and FLO1c.
Zhaoli DU ; Yanfei CHENG ; Hui ZHU ; Xiuping HE ; Borun ZHANG
Chinese Journal of Biotechnology 2015;31(2):231-241
Flocculent gene FLO1 and its truncated form FLO1c with complete deletion of repeat unit C were expressed in a non-flocculent industrial strain Saccharomyces cerevisiae CE6 to generate recombinant flocculent strains 6-AF1 and 6-AF1c respectively. Both strains of 6-AF1 and 6-AF1c displayed strong flocculation and better cell growth than the control strain CE6-V carrying the empty vector under acetic acid stress. Moreover, the flocculent strains converted glucose to ethanol at much higher rates than the control strain CE6-V under acetic acid stress. In the presence of 0.6% (V/V) acetic acid, the average ethanol production rates of 6-AF1 and 6-AF1c were 1.56 and 1.62 times of that of strain CE6-V, while the ethanol production rates of 6-AF1 and 6-AF1c were 1.21 and 1.78 times of that of strain CE6-V under 1.0% acetic acid stress. Results in this study indicate that acetic acid tolerance and fermentation performance of industrial S. cerevisiae under acetic acid stress can be improved largely by flocculation endowed by expression of flocculent genes, especially FLO1c.
Acetic Acid
;
chemistry
;
Ethanol
;
Fermentation
;
Flocculation
;
Glucose
;
Industrial Microbiology
;
Mannose-Binding Lectins
;
genetics
;
Saccharomyces cerevisiae
;
genetics
;
metabolism
;
Saccharomyces cerevisiae Proteins
;
genetics
5.Harvesting microalgae via flocculation: a review.
Chun WAN ; Xiaoyue ZHANG ; Xinqing ZHAO ; Fengwu BAI
Chinese Journal of Biotechnology 2015;31(2):161-171
Microalgae have been identified as promising candidates for biorefinery of value-added molecules. The valuable products from microalgae include polyunsaturated fatty acids and pigments, clean and sustainable energy (e.g. biodiesel). Nevertheless, high cost for microalgae biomass harvesting has restricted the industrial application of microalgae. Flocculation, compared with other microalgae harvesting methods, has distinguished itself as a promising method with low cost and easy operation. Here, we reviewed the methods of microalgae harvesting using flocculation, including chemical flocculation, physical flocculation and biological flocculation, and the progress and prospect in bio-flocculation are especially focused. Harvesting microalgae via bio-flocculation, especially using bio-flocculant and microalgal strains that is self-flocculated, is one of the eco-friendly, cost-effective and efficient microalgae harvesting methods.
Biofuels
;
Biomass
;
Flocculation
;
Microalgae
;
growth & development
6.Process development for continuous ethanol fermentation by the flocculating yeast under stillage backset conditions.
Lihan ZI ; Chenguang LIU ; Fengwu BAI
Chinese Journal of Biotechnology 2014;30(2):310-314
Propionic acid, a major inhibitor to yeast cells, was accumulated during continuous ethanol fermentation from corn meal hydrolysate by the flocculating yeast under stillage backset conditions. Based on its inhibition mechanism in yeast cells, strategies were developed for alleviating this effect. Firstly, high temperature processes such as medium sterilization generated more propionic acid, which should be avoided. Propionic acid was reduced significantly during ethanol fermentation without medium sterilization, and concentrations of biomass and ethanol increased by 59.3% and 7.4%, respectively. Secondly, the running time of stillage backset should be controlled so that propionic acid accumulated would be lower than its half inhibition concentration IC50 (40 mmol/L). Finally, because low pH augmented propionic acid inhibition in yeast cells, a higher pH of 5.5 was validated to be suitable for ethanol fermentation under the stillage backset condition.
Biomass
;
Ethanol
;
metabolism
;
Fermentation
;
Flocculation
;
Propionates
;
chemistry
;
Yeasts
;
metabolism
7.Study of pretreatment on microfiltration of huanglian jiedu decoction with ceramic membranes based on solution environment regulation theory.
Bo LI ; Lian-Jun ZHANG ; Li-Wei GUO ; Ting-Ming FU ; Hua-Xu ZHU
China Journal of Chinese Materia Medica 2014;39(1):59-64
To optimize the pretreatment of Huanglian Jiedu decoction before ceramic membranes and verify the effect of different pretreatments in multiple model system existed in Chinese herb aqueous extract. The solution environment of Huanglian Jiedu decoction was adjusted by different pretreatments. The flux of microfiltration, transmittance of the ingredients and removal rate of common polymers were as indicators to study the effect of different solution environment It was found that flocculation had higher stable permeate flux, followed by vacuuming filtration and adjusting pH to 9. The removal rate of common polymers was comparatively high. The removal rate of protein was slightly lower than the simulated solution. The transmittance of index components were higher when adjust pH and flocculation. Membrane blocking resistance was the major factor in membrane fouling. Based on the above indicators, the effect of flocculation was comparatively significant, followed by adjusting pH to 9.
Ceramics
;
chemistry
;
Drugs, Chinese Herbal
;
chemistry
;
Flocculation
;
Membranes, Artificial
;
Polymers
;
chemistry
;
Solutions
;
chemistry
;
Ultrafiltration
;
methods
8.Diversity and genetic stability of yeast flocculation caused by variation of tandem repeats in yeast flocculin genes.
Feng YUE ; Xuena GUO ; Xiuping HE ; Borun ZHANG
Chinese Journal of Biotechnology 2013;29(7):871-879
Yeast flocculation is described as a reversible, asexual and calcium dependent process, in which cells adhere to form flocs by interaction of specific cell surface proteins named flocculins on yeast cells with mannose residues present on the cell wall of adjacent yeast cells. Yeast flocculation provides a very economical and convenient pathway for separation of yeast cells from the fermentation broth or removal of heavy metal ions from effluent. A large number of tandem repeats have been found in genes encoding flocculins, which not only have great regulatory effect on the structure and function of flocculins, generating the diversity of flocculation characteristics, but lead to genetic instability in flocculation as well for driving slippage and recombination reactions within and between FLO genes. Here, the research progress in effect of variation of tandem repeats in FLO genes on flocculation characteristics and genetic stability were reviewed to direct and promote the controllable application of flocculation in industrial fermentation process and environmental remediation.
Fermentation
;
Flocculation
;
Mannose
;
Membrane Proteins
;
genetics
;
Saccharomyces cerevisiae
;
genetics
;
growth & development
;
Saccharomyces cerevisiae Proteins
;
genetics
;
Tandem Repeat Sequences
9.Microbiological Characteristics of Wild Yeast Strain Pichia anomala Y197-13 for Brewing Makgeolli.
Hye Ryun KIM ; Jae Ho KIM ; Dong Hoon BAI ; Byung Hak AHN
Mycobiology 2013;41(3):139-144
Makgeolli is a traditional cloudy-white Korean rice wine with an alcohol content of 6~7%. The present study investigated the morphological characteristics, carbon-utilizing ability, fatty acid composition, alcohol resistance, glucose tolerance, and flocculence of Saccharomyces cerevisiae Y98-5 and Pichia anomala Y197-13, non-S. cerevisiae isolated from Nuruk, which is used in brewing Makgeolli. Similar morphological characteristics were observed for both isolated wild yeast strains; and the carbon source assimilation of Y197-13 differed from that of other P. anomala strains. Strain Y197-13 was negative for D-trehalose, mannitol, arbutin, I-erythritol, and succinic acid. The major cellular fatty acids of strain Y197-13 included C18:2n6c (33.94%), C18:1n9c (26.97%) and C16:0 (20.57%). Strain Y197-13 was Crabtree-negative, with 60% cell viability at 12% (v/v) ethanol. The flocculation level of strain Y197-13 was 8.38%, resulting in its classification as a non-flocculent yeast.
Arbutin
;
Carbon
;
Cell Survival
;
Ethanol
;
Fatty Acids
;
Flocculation
;
Glucose
;
Mannitol
;
Pichia*
;
Saccharomyces cerevisiae
;
Sprains and Strains*
;
Succinic Acid
;
Wine
;
Yeasts*
10.Flocculation process of aqueous extracts of zhisou dingchuan oral solution with quaternary ammonium salt of chitosan.
Zezhan SUN ; Jiao SUN ; Li QIN ; Yong KANG
China Journal of Chinese Materia Medica 2012;37(9):1212-1218
OBJECTIVETo study the effect of quaternary ammonium salt of chitosan (HACC) in purifying aqueous extracts of Zhisou Dingchuan oral solution.
METHODModified quaternary ammonium salt of chitosan was used to flocculate aqueous extracts of Zhisou dingchuan oral solution, with turbidity degree and the retention rate of ephedrine and glycyrrhizin as indicators, to detect the influences of flocculant dosage, suspension temperature, mixing speed and time on flocculation effect. The optimum process conditions were found through orthogonal experimental design.
RESULTThe optimum process conditions: the flocculation temperature 30 degrees C, HACC's dosage 0.4 g x L(-1), the fast mixing speed 500 r x min(-1) and its time 1 min, the slow mixing speed 50 r x min(-1) and it time 2.4 10 min. Under the conditions, the retention rate of ephedrine was 97.6%, the turbidity degree was 1.1 NTU and 2.8 NTU after 30 days.
CONCLUSIONHACC can be used to purify aqueous extracts of Zhisou Dingchuan oral solution.
Chitosan ; chemistry ; Drugs, Chinese Herbal ; chemistry ; Flocculation ; Quaternary Ammonium Compounds ; chemistry ; Solutions ; chemistry

Result Analysis
Print
Save
E-mail