1.Protective effect of breviscapine against brain injury induced by intrauterine inflammation in preterm rats and its mechanism.
Si-Si WANG ; Shuang-Shuang XIE ; Yue-Xiu MENG ; Xiang-Yun ZHANG ; Yun-Chun LIU ; Ling-Ling WANG ; Yan-Fei WANG
Chinese Journal of Contemporary Pediatrics 2023;25(2):193-201
OBJECTIVES:
To study the protective effect of breviscapine against brain injury induced by intrauterine inflammation in preterm rats and its mechanism.
METHODS:
A preterm rat model of brain injury caused by intrauterine inflammation was prepared by intraperitoneal injections of lipopolysaccharide in pregnant rats. The pregnant rats and preterm rats were respectively randomly divided into 5 groups: control, model, low-dose breviscapine (45 mg/kg), high-dose breviscapine (90 mg/kg), and high-dose breviscapine (90 mg/kg)+ML385 [a nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor, 30 mg/kg] (n=10 each). The number and body weight of the live offspring rats were measured for each group. Hematoxylin-eosin staining was used to observe the pathological morphology of the uterus and placenta of pregnant rats and the pathological morphology of the brain tissue of offspring rats. Immunofluorescent staining was used to measure the co-expression of ionized calcium binding adaptor molecule-1 (IBA-1) and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) in the cerebral cortex of offspring rats. ELISA was used to measure the levels of interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β) in the brain tissue of offspring rats. Western blotting was used to measure the expression of Nrf2 pathway-related proteins in the brain tissue of offspring rats.
RESULTS:
Pathological injury was found in the uterus, and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, and severe microglia pyroptosis occurred in the cerebral cortex of the offspring rats in the model group. Compared with the control group, the model group had significant reductions in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and heme oxygenase-1 (HO-1) in the brain tissue of the offspring rats (P<0.05), but significant increases in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1β, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). Compared with the model group, the breviscapine administration groups showed alleviated pathological injury of the uterus and placenta tissue of the pregnant rats and the brain tissue of the offspring rats, significant increases in the number and body weight of the live offspring rats and the protein expression levels of Nrf2 and HO-1 in the brain tissue of the offspring rats (P<0.05), and significant reductions in the relative fluorescence intensity of the co-expression of IBA-1 and NLRP3, the levels of the inflammatory factors IL-6, IL-8, and IL-1β, and the protein expression levels of NLRP3 and caspase-1 in the brain tissue of the offspring rats (P<0.05). The high-dose breviscapine group had a significantly better effect than the low-dose breviscapine (P<0.05). ML385 significantly inhibited the intervention effect of high-dose breviscapine (P<0.05).
CONCLUSIONS
Breviscapine can inhibit inflammatory response in brain tissue of preterm rats caused by intrauterine inflammation by activating the Nrf2 pathway, and it can also inhibit microglial pyroptosis and alleviate brain injury.
Animals
;
Female
;
Pregnancy
;
Rats
;
Body Weight
;
Brain Injuries/prevention & control*
;
Caspase 1
;
Inflammation/drug therapy*
;
Interleukin-6
;
Interleukin-8
;
NF-E2-Related Factor 2
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Flavonoids/therapeutic use*
2.Baicalin treats cerebral ischemia reperfusion-induced brain edema in rats by inhibiting TRPV4 and AQP4 of astrocytes.
Xiao-Yu ZHENG ; Wen-Ting SONG ; Ye-Hao ZHANG ; Hui CAO ; Jian-Xun LIU
China Journal of Chinese Materia Medica 2022;47(4):1031-1038
This study aims to explore the pharmacodynamic effect of baicalin on rat brain edema induced by cerebral ischemia reperfusion injury and discuss the mechanism from the perspective of inhibiting astrocyte swelling, which is expected to serve as a refe-rence for the treatment of cerebral ischemia with Chinese medicine. To be specific, middle cerebral artery occlusion(suture method) was used to induce cerebral ischemia in rats. Rats were randomized into normal group, model group, high-dose baicalin(20 mg·kg~(-1)) group, and low-dose baicalin(10 mg·kg~(-1)) group. The neurobehavior, brain index, brain water content, and cerebral infarction area of rats were measured 6 h and 24 h after cerebral ischemia. Brain slices were stained with hematoxylin and eosin(HE) for the observation of pathological morphology of cerebral cortex after baicalin treatment. Enzyme-linked immunosorbent assay(ELISA) was employed to determine the content of total L-glutathione(GSH) and glutamic acid(Glu) in brain tissue, Western blot to measure the content of glial fibrillary acidic protein(GFAP), aquaporin-4(AQP4), and transient receptor potential vanilloid type 4(TRPV4), and immunohistochemical staining to observe the expression of GFAP. The low-dose baicalin was used for exploring the mechanism. The experimental results showed that the neurobehavioral scores(6 h and 24 h of cerebral ischemia), brain water content, and cerebral infarction area of the model group were increased, and both high-dose and low-dose baicalin can lower the above three indexes. The content of GSH dropped but the content of Glu raised in brain tissue of rats in the model group. Low-dose baicalin can elevate the content of GSH and lower the content of Glu. According to the immunohistochemical staining result, the model group demonstrated the increase in GFAP expression, and swelling and proliferation of astrocytes, and the low-dose baicalin can significantly improve this situation. The results of Western blot showed that the expression of GFAP, TRPV4, and AQP4 in the cerebral cortex of the model group increased, and the low-dose baicalin reduce their expression. The cerebral cortex of rats in the model group was severely damaged, and the low-dose baicalin can significantly alleviate the damage. The above results indicate that baicalin can effectively relieve the brain edema caused by cerebral ischemia reperfusion injury in rats, possibly by suppressing astrocyte swelling and TRPV4 and AQP4.
Animals
;
Aquaporin 4/genetics*
;
Astrocytes
;
Brain Edema/drug therapy*
;
Brain Ischemia/metabolism*
;
Flavonoids
;
Infarction, Middle Cerebral Artery/drug therapy*
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion
;
TRPV Cation Channels/therapeutic use*
3.Efficacy and mechanism of low glycoside from Epimedii Folium flavonoids on retinoic acid-induced osteoporosis in rats.
Yu-Zhi MAO ; Jing-Qi ZENG ; Bing YANG ; Ya-Ping CHEN ; Yan-Jun YANG ; Tian-Hao QI ; Xiao-Bin JIA ; Liang FENG
China Journal of Chinese Materia Medica 2022;47(16):4446-4453
In this study, the secondary osteoporosis model was induced by oral administration of retinoic acid for two weeks in SD male rats. The efficacy and mechanism of LG on secondary osteoporosis in rats were explored through the bone morphogenetic protein 2(BMP-2)/Runt-related transcription factor 2(Runx2)/Osterix signaling pathway. With Xianling Gubao Capsules(XLGB) as the positive control, three dose groups of low glycoside from Epimedii Folium flavonoids(LG), i.e., low-dose group(LG-L), medium-dose group(LG-M), and high-dose group(LG-H), were set up. After modeling, the rats in each group were treated correspondingly by gavage for eight weeks. The action target of LG in the treatment of secondary osteoporosis in rats was analyzed by measuring the body weight and the organ indexes of rats including heart index and testis index. The efficacy of LG was characterized by the pathological changes of the femur, the microstructural parameters of the trabecular bone, and the biomechanical properties of femoral tissues in rats. The mechanism of LG was explored by measuring the relevant biochemical indexes and the changes in BMP-2, Runx2, and Osterix content in rats with secondary osteoporosis. The results showed that the action target of LG in the treatment of secondary osteoporosis in rats was the testis. LG can improve the bone loss of the femur, increase the number and thickness of the trabecular bone, reduce the porosity and separation of the trabecular bone, potentiate the resistance of bone to deformation and destruction, up-regulate the serum content of Ca, P, aminoterminal propeptide of type Ⅰ procollagen(PINP), and osteocalcin(OC), promote bone matrix calcification and the expression of BMP-2, Runx2, and Osterix proteins, and accelerate bone formation, thereby reducing the risk of fractures, and ultimately exerting anti-secondary osteoporosis efficacy.
Animals
;
Bone Density
;
Core Binding Factor Alpha 1 Subunit/metabolism*
;
Drugs, Chinese Herbal
;
Flavonoids/therapeutic use*
;
Glycosides/therapeutic use*
;
Male
;
Osteoporosis/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Tretinoin/adverse effects*
4.Research progress on mechanism of Carthamus tinctorius in ischemic stroke therapy.
Jun-Ren CHEN ; Xiao-Fang XIE ; Xiao-Yu CAO ; Gang-Min LI ; Yan-Peng YIN ; Cheng PENG
China Journal of Chinese Materia Medica 2022;47(17):4574-4582
Carthamus tinctorius is proved potent in treating ischemic stroke. Flavonoids, such as safflower yellow, hydroxysafflor yellow A(HSYA), nicotiflorin, safflower yellow B, and kaempferol-3-O-rutinoside, are the main substance basis of C. tinctorius in the treatment of ischemic stroke, and HSYA is the research hotspot. Current studies have shown that C. tinctorius can prevent and treat ischemic stroke by reducing inflammation, oxidative stress, and endoplasmic reticulum stress, inhibiting neuronal apoptosis and platelet aggregation, as well as increasing blood flow. C. tinctorius can regulate the pathways including nuclear factor(NF)-κB, mitogen-activated protein kinase(MAPK), signal transducer and activator of transcription protein 3(STAT3), and NF-κB/NLR family pyrin domain containing 3(NLRP3), and inhibit the activation of cyclooxygenase-2(COX-2)/prostaglandin D2/D prostanoid receptor pathway to alleviate the inflammatory development during ischemic stroke. Additionally, C. tinctorius can relieve oxidative stress injury by inhibiting oxidation and nitrification, regulating free radicals, and mediating nitric oxide(NO)/inducible nitric oxide synthase(iNOS) signals. Furthermore, mediating the activation of Janus kinase 2(JAK2)/STAT3/suppressor of cytokine signaling 3(SOCS3) signaling pathway and phosphoinositide 3-kinase(PI3 K)/protein kinase B(Akt)/glycogen synthase kinase-3β(GSK3β) signaling pathway and regulating the release of matrix metalloproteinase(MMP) inhibitor/MMP are main ways that C. tinctorius inhibits neuronal apoptosis. In addition, C. tinctorius exerts the therapeutic effect on ischemic stroke by regulating autophagy and endoplasmic reticulum stress. The present study reviewed the molecular mechanisms of C. tinctorius in the treatment of ischemic stroke to provide references for the clinical application of C. tinctorius.
Carthamus tinctorius/chemistry*
;
Chalcone/therapeutic use*
;
Cyclooxygenase 2/metabolism*
;
Cytokines/metabolism*
;
Flavonoids/therapeutic use*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Humans
;
Ischemic Stroke/drug therapy*
;
Janus Kinase 2/metabolism*
;
Mitogen-Activated Protein Kinases/metabolism*
;
NF-kappa B/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Nitric Oxide/metabolism*
;
Nitric Oxide Synthase Type II/metabolism*
;
Phosphatidylinositol 3-Kinase/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Prostaglandin D2
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Quinones/pharmacology*
5.Mechanism of total flavonoids from Ampelopsis grossedentata against gouty arthritis based on multi-level interactive network and in vivo experimental validation.
Jia-Chuan LI ; Si-Ying LI ; Qin SONG ; Er-Xiu MA ; Mu-Karan AIMAIJIANG
China Journal of Chinese Materia Medica 2022;47(17):4733-4743
The present study investigated the mechanism of total flavonoids from Ampelopsis grossedentata(AGTF) against gouty arthritis(GA) by network pharmacology and experimental validation. The main active ingredients and targets of AGTF, as well as disease targets, were screened out using relevant databases and literature data. The "protein-protein interaction"(PPI) network and "drug-ingredient-target-pathway" network were constructed, and the potential targets and mechanism of AGTF against GA were predicted. The hyperuricemia(HUA) combined with GA model was induced in rats. The gait behaviors of rats were scored, and ankle swelling degree was observed. The uric acid(UA) level and xanthine oxidase(XOD) activity in the rat serum were detected, and the levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) were measured. The protein expression of toll-like receptor 4(TLR4), myeloid differentiation factor 88(MyD88), and nuclear factor-kappa B(NF-κB) in the synovial tissues of the rat ankle joint was determined by immunohistochemistry. Ten active ingredients of AGTF and 73 candidate targets of AGTF against GA were screened out by network pharmacology. Eighty-six signaling pathways were enriched, including TNF signaling pathway, NF-κB signaling pathway, TLR signaling pathway, Nod-like receptor signaling pathway, and purine metabolism signaling pathway, which were closely related to AGTF against GA. Animal experimental results showed that AGTF could effectively improve the abnormal gait behaviors of GA rats, relieve ankle inflammation, and reduce ankle joint swelling. In addition, AGTF could significantly reduce UA level, inhibit XOD activity, decrease TNF-α, IL-6, and IL-1β content, and down-regulate the expression of TLR4, MyD88, and NF-κB in ankle synovial tissues(P<0.05, P<0.01). The results of network pharmacology and experimental validation are consistent, indicating that AGTF exerts its therapeutic effect on GA by regulating UA metabolism, improving abnormal UA level, reducing the release of inflammatory factors, and regulating immunity and the TLR4/MyD88/NF-κB inflammatory pathway.
Ampelopsis/chemistry*
;
Animals
;
Arthritis, Gouty/drug therapy*
;
Flavonoids/therapeutic use*
;
Interleukin-1beta/metabolism*
;
Interleukin-6/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
NF-kappa B/metabolism*
;
NLR Proteins/metabolism*
;
Rats
;
Toll-Like Receptor 4/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Uric Acid
;
Xanthine Oxidase
6.Optimization of extraction of flavonoids from Lonicera rupicola and analysis of its effects in resisting inflammation, relieving pain, enhancing immunity, and inhibiting pyroptosis.
Cong-Cong LI ; Lu WANG ; Kui-Kui GUAN ; Qun LIU ; Chao-Xi CHEN
China Journal of Chinese Materia Medica 2021;46(22):5877-5886
The present study optimized the extraction of flavonoids from Lonicera rupicola Hook. f. et Thoms(LRH) and explored its pharmacological effects, such as resisting inflammation, relieving pain, enhancing immunity, and inhibiting pyroptosis, aiming to provide data support and scientific basis for the development and utilization of LRH. Response surface methodology(RSM) was applied to optimize the extraction of flavonoids from LRH based on the results of single-factor experiments. Anti-inflammatory and analgesic effects of LRH flavonoids were evaluated via inflammation and pain models in mice, such as xylene-induced ear swelling, carrageenan-induced footpad swelling, writhing caused by acetic acid, and paw licking. The effect of LRH flavonoids on the carbon clearance index of monocytes and serum immunoglobulin A(IgA) and IgM levels was analyzed on the immunosuppression model induced by cyclophosphamide in mice. The anti-oxidative effect in vivo of LRH flavonoids on liver superoxide dismutase(SOD), catalase(CAT), and malondialdehyde(MDA) levels was determined based on the chronic/subacute aging model in mice induced by D-galactose. The levels of cysteinyl aspartate specific proteinase-1(caspase-1), interleukin-1β(IL-1β), and IL-18 in the supernatant of J774 A.1 mononuclear phagocytes were detected to evaluate the effect of LRH flavonoids on the pyroptosis of mononuclear phagocytes in mice induced by the combination of lipopolysaccharide(LPS) and adenosine triphosphate(ATP). Meanwhile, the effect of LRH flavonoids on the cAMP-PKA signaling pathway was also explored. The optimum conditions for the extraction of LRH flavonoids are listed below: extraction temperature of 65 ℃, the ethanol concentration of 50%, extraction time of 60 min, a material-liquid ratio at 1∶25, and the yield of LRH flavonoids of 0.553%. RSM determined the multiple quadratic regression equation model of response value and variables as follows: the yield of LRH flavonoids=0.61-0.48A+0.1B+0.029C-0.014D+0.32AB+0.04AC-0.012AD-0.02BC+0.037BD-0.031CD-0.058A~2-0.068B~2-0.069C~2-0.057D~2. LRH flavonoids could effectively inhibit ear swelling and footpad swelling, reduced acetic acid-induced writhing, and delayed the paw licking response time in mice. Additionally, LRH flavonoids could improve the carbon clearance index in immunosuppressed mice, potentiate the activities of SOD and CAT and reduce MDA levels in the liver of aging mice induced by D-galactose, and effectively inhibit macrophage pyroptosis by decreasing the levels of caspase-1, IL-1β, and IL-18. The results reveal that LRH flavonoids possess excellent pharmacological activities such as resisting inflammation and oxidation, relieving pain, and enhancing immunity. They can inhibit pyroptosis by enhancing the cAMP-PKA signaling pathway. The results of this study can underpin the pharmacological research, development, and utilization of LRH.
Analgesics/therapeutic use*
;
Animals
;
Edema/drug therapy*
;
Flavonoids/therapeutic use*
;
Inflammation/drug therapy*
;
Lonicera
;
Mice
;
Mice, Inbred ICR
;
Pain/drug therapy*
;
Plant Extracts/therapeutic use*
;
Pyroptosis
7.Mechanism of flavonoid components in Astragali Radix in inhibiting tumor growth and immunoregulation in C57BL/6 tumor bearing mice based on "invigorating Qi for consolidation of exterior".
Bing YANG ; Gui-Hong YU ; Ming-Yu LI ; Hui-Min GU ; Ya-Ping CHEN ; Liang FENG ; Xiao-Bin JIA
China Journal of Chinese Materia Medica 2019;44(23):5184-5190
Traditional Chinese medicine believes that the occurrence and development of tumors is related to the body's Qi deficiency. " Invigorating Qi for consolidation of exterior" has became an effective way to treat tumors by traditional Chinese medicine. This study is based on the " invigorating Qi for consolidation of exterior" to explore the effect of flavonoid components in Qi-invigorating herbs Astragali Radix( AR) on the growth and immune function of mouse Lewis lung cancer xenografts,and further explore its mechanism of action. In the present study,high performance liquid chromatography was performed to analyze the flavonoid components in AR.The Lewis lung cancer model of C57 BL/6 mice was constructed,and the tumor volume of mice was determined by Visual Sonics Vevo2100 high frequency color ultrasound. The levels of IL~(-1)7 and RORγt in serum and tumor tissues were detected by ELISA and immunohistochemistry. The expression of IRE~(-1)/XBP~(-1) pathway-related proteins in tumor tissues was detected by Western blot. The results revealed that treatment of 5 and 10 g·kg~(-1)·d~(-1) of flavonoid components in AR significantly inhibited tumor growth of C57 BL/6 tumorbearing mice. The inhibition rates at the dose of 5 and 10 g·kg~(-1)·d~(-1) of flavonoid components in AR were( 29. 5±4. 4) % and( 43. 4±5. 2) %,respectively. The expression of IL~(-1)7 and RORγt in serum and tumor tissues of Lewis lung cancer mice were decreased,and the spleen index and thymus index were significantly enhanced by the flavonoid components in AR. Flavonoid components in AR could decrease the expression of X-box binding protein 1( XBP1),inositol-requiring enzyme( IRE1) and glucose regulated protein 78 k D( GRP78),and increase the expression of C/EBP homologous protein( CHOP),and the high-dose group is better,suggesting that the anti-lung cancer effect of flavonoid components in AR is related to the regulation of XBP1 mediated ERs. This study provides new evidence that the flavonoid components in AR could inhibit the tumor growth of C57 BL/6 tumor-bearing mice by regulating the body's immune function through " invigorating Qi for consolidation of exterior".
Animals
;
Astragalus Plant/chemistry*
;
Carcinoma, Lewis Lung/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Endoplasmic Reticulum Chaperone BiP
;
Flavonoids/therapeutic use*
;
Mice
;
Mice, Inbred C57BL
;
Qi
;
Xenograft Model Antitumor Assays
8.Icariin Improves Cognitive Impairment after Traumatic Brain Injury by Enhancing Hippocampal Acetylation.
Zi-Gang ZHANG ; Xin WANG ; Jin-Hai ZAI ; Cai-Hua SUN ; Bing-Chun YAN
Chinese journal of integrative medicine 2018;24(5):366-371
OBJECTIVETo examine the effect of icariin (ICA) on the cognitive impairment induced by traumatic brain injury (TBI) in mice and the underlying mechanisms related to changes in hippocampal acetylation level.
METHODSThe modifified free-fall method was used to establish the TBI mouse model. Mice with post-TBI cognitive impairment were randomly divided into 3 groups using the randomised block method (n=7): TBI (vehicle-treated), low-dose (75 mg/kg) and high-dose (150 mg/kg) of ICA groups. An additional sham-operated group (vehicle-treated) was employed. The vehicle or ICA was administrated by gavage for 28 consecutive days. The Morris water maze (MWM) test was conducted. Acetylcholine (ACh) content, mRNA and protein levels of choline acetyltransferase (ChAT), and protein levels of acetylated H3 (Ac-H3) and Ac-H4 were detected in the hippocampus.
RESULTSCompared with the sham-operated group, the MWM performance, hippocampal ACh content, mRNA and protein levels of ChAT, and protein levels of Ac-H3 and Ac-H4 were signifificantly decreased in the TBI group (P<0.05). High-dose of ICA signifificantly ameliorated the TBI-induced weak MWM performance, increased hippocampal ACh content, and mRNA and protein levels of ChAT, as well as Ac-H3 protein level compared with the TBI group (P<0.05).
CONCLUSIONICA improved post-TBI cognitive impairment in mice by enhancing hippocampal acetylation, which improved hippocampal cholinergic function and ultimately improved cognition.
Acetylation ; Acetylcholine ; metabolism ; Animals ; Brain Injuries, Traumatic ; complications ; Choline O-Acetyltransferase ; genetics ; metabolism ; Cognitive Dysfunction ; drug therapy ; etiology ; Flavonoids ; chemistry ; pharmacology ; therapeutic use ; Hippocampus ; pathology ; Histones ; metabolism ; Homeostasis ; drug effects ; Male ; Maze Learning ; drug effects ; Mice ; RNA, Messenger ; genetics ; metabolism
9.Effect of baicalin on behavioral characteristics of rats with attention deficit hyperactivity disorder.
Rong-Yi ZHOU ; Xin-Min HAN ; Jiao-Jiao WANG ; Hai-Xia YUAN ; Ji-Chao SUN ; Yue YOU ; Yu-Chen SONG
Chinese Journal of Contemporary Pediatrics 2017;19(8):930-937
OBJECTIVETo investigate the effect of baicalin on the behavioral characteristics of rats with attention deficit hyperactivity disorder (ADHD), and to provide a basis for further research on baicalin in the treatment of ADHD.
METHODSA total of 40 SHR rats were randomly divided into model group, methylphenidate hydrochloride (MPH) group, and low-, medium-, and high-dose baicalin groups, with 8 rats in each group. Eight WKY rats were selected as normal control group. The rats in the MPH group (0.07 mg/mL) and the low- (3.33 mg/mL), medium- (6.67 mg/mL), and high-dose (10 mg/mL) baicalin groups were given the corresponding drugs (1.5 mL/100 g) by gavage twice a day, and those in the normal control group and the model group were given an equal volume of normal saline by gavage twice a day. The course of treatment was 4 weeks for all groups. The open field test was performed to observe total moving distance and average moving speed on day 0 of experiment and at 7, 14, 21, and 28 days after gavage and to evaluate the control effects of drugs on hyperactivity and impulsive behavior. The Morris water maze test was used to observe the latency, time spent in the target quadrant, and number of platform crossings and to evaluate the effects of drugs on attention.
RESULTSThe open field test showed that the model group and the drug treatment groups had a significantly longer total moving distance and a significantly higher average moving speed than the normal control group on day 0 (P<0.05). On day 7, the MPH group had significant reductions in total moving distance and average moving speed compared with the model group (P<0.05). On day 14, the MPH group and the high-dose baicalin group had significant reductions in total moving distance and average moving speed compared with the model group (P<0.05). The data on days 21 and 28 showed that compared with the model group, the low-, medium-, and high-dose baicalin groups had gradual reductions in total moving distance and average moving speed (P<0.05). The water maze test showed that compared with the model group, the MPH group and the medium- and high-dose baicalin groups had a significantly longer time spent in the target quadrant (P<0.05), and the MPH group and the high-dose baicalin group had a significantly higher proportion of the moving distance in the target quadrant in total moving distance (P<0.05). The high-dose baicalin group had the highest number of platform crossings among all groups (P<0.05).
CONCLUSIONSBoth baicalin and MPH can regulate the motor ability and learning and memory abilities of SHR rats with ADHD and thus control the core symptoms of ADHD, i.e., hyperactivity, impulsive behavior, and inattention. Baicalin exerts its effect in a dose-dependent manner, and high-dose baicalin has the most significant effect, but compared with MPH, it needs a longer time to play its therapeutic effect.
Animals ; Attention Deficit Disorder with Hyperactivity ; drug therapy ; psychology ; Behavior, Animal ; drug effects ; Dose-Response Relationship, Drug ; Flavonoids ; therapeutic use ; Male ; Maze Learning ; drug effects ; Motor Activity ; drug effects ; Rats ; Rats, Inbred SHR ; Rats, Inbred WKY
10.Effect of baicalin on ATPase and LDH and its regulatory effect on the AC/cAMP/PKA signaling pathway in rats with attention deficit hyperactivity disorder.
Rong-Yi ZHOU ; Jiao-Jiao WANG ; Yue YOU ; Ji-Chao SUN ; Yu-Chen SONG ; Hai-Xia YUAN ; Xin-Min HAN
Chinese Journal of Contemporary Pediatrics 2017;19(5):576-582
OBJECTIVETo study the effect of baicalin on synaptosomal adenosine triphosphatase (ATPase) and lactate dehydrogenase (LDH) and its regulatory effect on the adenylate cyclase (AC)/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway in rats with attention deficit hyperactivity disorder (ADHD).
METHODSA total of 40 SHR rats were randomly divided into five groups: ADHD model, methylphenidate hydrochloride treatment (0.07 mg/mL), and low-dose (3.33 mg/mL), medium-dose (6.67 mg/mL), and high-dose (10 mg/mL) baicalin treatment (n=8 each). Eight WKY rats were selected as normal control group. Percoll density gradient centrifugation was used to prepare brain synaptosomes and an electron microscope was used to observe their structure. Colorimetry was used to measure the activities of ATPase and LDH in synaptosomes. ELISA was used to measure the content of AC, cAMP, and PKA.
RESULTSCompared with the normal control group, the ADHD model group had a significant reduction in the ATPase activity, a significant increase in the LDH activity, and significant reductions in the content of AC, cAMP, and PKA (P<0.05). Compared with the ADHD model group, the methylphenidate hydrochloride group and the medium- and high-dose baicalin groups had a significant increase in the ATPase activity (P<0.05), a significant reduction in the LDH activity (P<0.05), and significant increases in the content of AC, cAMP, and PKA (P<0.05). Compared with the methylphenidate hydrochloride group, the high-dose baicalin group had significantly greater changes in these indices (P<0.05). Compared with the low-dose baicalin group, the high-dose baicalin group had a significant increase in the ATPase activity (P<0.05); the medium- and high-dose baicalin groups had a significant reduction in the LDH activity (P<0.05) and significant increases in the content of AC, cAMP, and PKA (P<0.05). Compared with the medium-dose baicalin group, the high-dose baicalin group had a significant increase in the ATPase activity (P<0.05).
CONCLUSIONSBoth methylphenidate hydrochloride and baicalin can improve synaptosomal ATPase and LDH activities in rats with ADHD. The effect of baicalin is dose-dependent, and high-dose baicalin has a significantly greater effect than methylphenidate hydrochloride. Baicalin exerts its therapeutic effect possibly by upregulating the AC/cAMP/PKA signaling pathway.
Adenosine Triphosphatases ; metabolism ; Adenylyl Cyclases ; physiology ; Animals ; Attention Deficit Disorder with Hyperactivity ; drug therapy ; physiopathology ; Cyclic AMP ; physiology ; Cyclic AMP-Dependent Protein Kinases ; physiology ; Flavonoids ; pharmacology ; therapeutic use ; L-Lactate Dehydrogenase ; metabolism ; Rats ; Rats, Inbred SHR ; Rats, Inbred WKY ; Signal Transduction ; drug effects ; Synaptosomes ; chemistry ; ultrastructure

Result Analysis
Print
Save
E-mail