1.Research on Runx2 gene induced differentiation of human amniotic mesenchymal stem cells into ligament fibroblasts in vitro and promotion of tendon-bone healing in rabbits.
Tao XIE ; Hehe ZHONG ; Ying JIN ; Xiuqi LIU ; Fang CHEN ; Kuan XIANG ; Shuhong WU
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(12):1523-1532
OBJECTIVE:
To investigate whether the Runx2 gene can induce the differentiation of human amniotic mesenchymal stem cells (hAMSCs) to ligament fibroblasts in vitro and promote the tendon-bone healing in rabbits.
METHODS:
hAMSCs were isolated from the placentas voluntarily donated from healthy parturients and passaged, and then identified by flow cytometric identification. Adenoviral vectors carrying Runx2 gene (Ad-Runx2) and empty vector adenovirus (Ad-NC) were constructed and viral titer assay; then, the 3rd generation hAMSCs were transfected with Ad-Runx2 (Ad-Runx2 group) or Ad-NC (Ad-NC group). The real-time fluorescence quantitative PCR and Western blot were used to detect Runx2 gene and protein expression to verify the effectiveness of Ad-Runx2 transfection of hAMSCs; and at 3 and 7 days after transfection, real-time fluorescence quantitative PCR was further used to detect the expressions of ligament fibroblast-related genes [vascular endothelial growth factor (VEGF), collagen type Ⅰ, Fibronectin, and Tenascin-C]. The hAMSCs were used as a blank control group. The hAMSCs, hAMSCs transfected with Ad-NC, and hAMSCs were mixed with Matrigel according to the ratio of 1 : 1 and 1 : 2 to construct the cell-scaffold compound. Cell proliferation was detected by cell counting kit 8 (CCK-8) assay, and the corresponding cell-scaffold compound with better proliferation were taken for subsequent animal experiments. Twelve New Zealand white rabbits were randomly divided into 4 groups of sham operation group (Sham group), anterior cruciate ligament reconstruction group (ACLR group), anterior cruciate ligament reconstruction+hAMSCs transfected with Ad-NC-scaffold compound group (Ad-NC group), and anterior cruciate ligament reconstruction+hAMSCs transfected with Ad-Runx2-scaffold compound group (Ad-Runx2 group), with 3 rabbits in each group. After preparing the ACL reconstruction model, the Ad-NC group and the Ad-Runx2 group injected the optimal hAMSCs-Matrigel compunds into the bone channel correspondingly. The samples were taken for gross, histological (HE staining and sirius red staining), and immunofluorescence staining observation at 1 month after operation to evaluate the inflammatory cell infiltration as well as collagen and Tenascin-C content in the ligament tissues.
RESULTS:
Flow cytometric identification of the isolated cells conformed to the phenotypic characteristics of MSCs. The Runx2 gene was successfully transfected into hAMSCs. Compared with the Ad-NC group, the relative expressions of VEGF and collagen type Ⅰ genes in the Ad-Runx2 group significantly increased at 3 and 7 days after transfection ( P<0.05), Fibronectin significantly increased at 3 days ( P<0.05), and Tenascin-C significantly increased at 3 days and decreased at 7 days ( P<0.05). CCK-8 detection showed that there was no significant difference ( P>0.05) in the cell proliferation between groups and between different time points after mixed culture of two ratios. So the cell-scaffold compound constructed in the ratio of 1∶1 was selected for subsequent experiments. Animal experiments showed that at 1 month after operation, the continuity of the grafted tendon was complete in all groups; HE staining showed that the tissue repair in the Ad-Runx2 group was better and there were fewer inflammatory cells when compared with the ACLR group and the Ad-NC group; sirius red staining and immunofluorescence staining showed that the Ad-Runx2 group had more collagen typeⅠ and Ⅲ fibers, tending to form a normal ACL structure. However, the fluorescence intensity of Tenascin-C protein was weakening when compared to the ACLR and Ad-NC groups.
CONCLUSION
Runx2 gene transfection of hAMSCs induces directed differentiation to ligament fibroblasts and promotes tendon-bone healing in reconstructed anterior cruciate ligament in rabbits.
Pregnancy
;
Female
;
Humans
;
Rabbits
;
Animals
;
Vascular Endothelial Growth Factor A/metabolism*
;
Fibronectins/metabolism*
;
Collagen Type I/genetics*
;
Tenascin/metabolism*
;
Collagen/metabolism*
;
Anterior Cruciate Ligament/surgery*
;
Mesenchymal Stem Cells
;
Tendons/metabolism*
;
Fibroblasts/metabolism*
2.The mechanism of S100A7 inducing the migration and invasion in cervical cancer cells.
Tian TIAN ; Zhen HUA ; Yan KONG ; Ling Zhi WANG ; Xiang Yu LIU ; Yi HAN ; Xue Min ZHOU ; Zhu Mei CUI
Chinese Journal of Oncology 2023;45(5):375-381
Objective: To investigate the mechanism of S100A7 inducing the migration and invasion in cervical cancers. Methods: Tissue samples of 5 cases of cervical squamous cell carcinoma and 3 cases of adenocarcinoma were collected from May 2007 to December 2007 in the Department of Gynecology of the Affiliated Hospital of Qingdao University. Immunohistochemistry was performed to evaluate the expression of S100A7 in cervical carcinoma tissues. S100A7-overexpressing HeLa and C33A cells were established with lentiviral systems as the experimental group. Immunofluorescence assay was performed to observe the cell morphology. Transwell assay was taken to detect the effect of S100A7-overexpression on the migration and invasion of cervical cancer cells. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to examine the mRNA expressions of E-cadherin, N-cadherin, vimentin and fibronectin. The expression of extracellular S100A7 in conditioned medium of cervical cancer cell was detected by western blot. Conditioned medium was added into Transwell lower compartment to detect cell motility. Exosomes were isolated and extracted from the culture supernatant of cervical cancer cell, the expressions of S100A7, CD81 and TSG101 were detected by western blot. Transwell assay was taken to detect the effect of exosomes on the migration and invasion of cervical cancer cells. Results: S100A7 expression was positively expressed in cervical squamous carcinoma and negative expression in adenocarcinoma. Stable S100A7-overexpressing HeLa and C33A cells were successfully constructed. C33A cells in the experimental group were spindle shaped while those in the control group tended to be polygonal epithelioid cells. The number of S100A7-overexpressed HeLa cells passing through the Transwell membrane assay was increased significantly in migration and invasion assay (152.00±39.22 vs 105.13±15.75, P<0.05; 115.38±34.57 vs 79.50±13.68, P<0.05). RT-qPCR indicated that the mRNA expressions of E-cadherin in S100A7-overexpressed HeLa and C33A cells decreased (P<0.05) while the mRNA expressions of N-cadherin and fibronectin in HeLa cells and fibronectin in C33A cells increased (P<0.05). Western blot showed that extracellular S100A7 was detected in culture supernatant of cervical cancer cells. HeLa cells of the experimental group passing through transwell membrane in migration and invasion assays were increased significantly (192.60±24.41 vs 98.80±47.24, P<0.05; 105.40±27.38 vs 84.50±13.51, P<0.05) when the conditional medium was added into the lower compartment of Transwell. Exosomes from C33A cell culture supernatant were extracted successfully, and S100A7 expression was positive. The number of transmembrane C33A cells incubated with exosomes extracted from cells of the experimental group was increased significantly (251.00±49.82 vs 143.00±30.85, P<0.05; 524.60±52.74 vs 389.00±63.23, P<0.05). Conclusion: S100A7 may promote the migration and invasion of cervical cancer cells by epithelial-mesenchymal transition and exosome secretion.
Female
;
Humans
;
Uterine Cervical Neoplasms/pathology*
;
HeLa Cells
;
Fibronectins/metabolism*
;
Culture Media, Conditioned
;
Carcinoma, Squamous Cell/metabolism*
;
Adenocarcinoma
;
Cadherins/metabolism*
;
RNA, Messenger/metabolism*
;
Cell Movement
;
Epithelial-Mesenchymal Transition/genetics*
;
Cell Line, Tumor
;
Cell Proliferation
;
S100 Calcium Binding Protein A7/metabolism*
3.Molecular mechanism of Gegen Qinlian Decoction in promoting differentiation of brown adipose tissue to improve glucose and lipid metabolism disorders in diabetic rats.
Xiao-Qing ZHANG ; Wen-Hua XU ; Xin XIAO ; Jun-Feng DING ; Yue JIANG ; Jun TU
China Journal of Chinese Materia Medica 2021;46(17):4462-4470
This study explored the molecular mechanism underlying the Gegen Qinlian Decoction(GQD) promoting the differentiation of brown adipose tissue(BAT) to improve glucose and lipid metabolism disorders in diabetic rats. After the hypoglycemic effect of GQD on diabetic rats induced by high-fat diet combined with a low dose of streptozotocin was confirmed, the total RNA of rat BAT around scapula was extracted. Nuclear transcription genes Prdm16, Pparγc1α, Pparα, Pparγ and Sirt1, BAT marker genes Ucp1, Cidea and Dio2, energy expenditure gene Ampkα2 as well as BAT secretion factors Adpn, Fndc5, Angptl8, IL-6 and Rbp4 were detected by qPCR, then were analyzed by IPA software. Afterward, the total protein from rat BAT was extracted, and PRDM16, PGC1α, PPARγ, PPARα, SIRT1, ChREBP, AMPKα, UCP1, ADPN, NRG4, GLUT1 and GLUT4 were detected by Western blot. The mRNA expression levels of Pparγc1α, Pparα, Pparγ, Ucp1, Cidea, Ampkα2, Dio2, Fndc5, Rbp4 and Angptl8 were significantly increased(P<0.05) and those of Adpn and IL-6 were significantly decreased(P<0.05) in the GQD group compared with the diabetic group. In addition, Sirt1 showed a downward trend(P=0.104), whereas Prdm16 tended to be up-regulated(P=0.182) in the GQD group. IPA canonical pathway analysis and diseases-and-functions analysis suggested that GQD activated PPARα/RXRα and SIRT1 signaling pathways to promote the differentiation of BAT and reduce the excessive lipid accumulation. Moreover, the protein expression levels of PRDM16, PGC1α, PPARα, PPARγ, SIRT1, ChREBP, AMPKα, UCP1, GLUT1, GLUT4 and NRG4 were significantly decreased in the diabetic group(P<0.01), which were elevated after GQD intervention(P<0.05). Unexpectedly, the expression of ADPN protein in the diabetic group was up-regulated(P<0.01) as compared with the control group, which was down-regulated after the administration with GQD(P<0.01). This study indicated that GQD promoted BAT differentiation and maturity to increase energy consumption, which reduced the glucose and lipid metabolism disorders and thereby improved diabetes symptoms.
Adipose Tissue, Brown
;
Animals
;
Diabetes Mellitus, Experimental/genetics*
;
Drugs, Chinese Herbal
;
Fibronectins
;
Glucose
;
Lipid Metabolism
;
Lipid Metabolism Disorders
;
Rats
4.Effect of a novel EZH2 inhibitor GSK126 on prostate cancer cells.
Weiren LIN ; Yatian CHEN ; Linghui ZENG ; Rongbiao YING ; Feng ZHU
Journal of Zhejiang University. Medical sciences 2016;45(4):356-363
To investigate the effect of a novel EZH2 inhibitor GSK126 on cell growth, apoptosis and migration of prostate cancer cells.Prostate cancer PC-3 and DU145 cells were treated with GSK126 at different doses. Cell growth was detected by sulforhodamine assay. Cell apoptosis was assayed by Annexin V-/PI kit. Transwell chamber and wound healing assays were conducted to detect cell migration. The mRNA level was detected by quantitative PCR, and protein expression was detected by Western blot analysis.GSK126 showed significant effect on cell growth and apoptosis when the dose was higher than 50 μmol/L. Wound healing assay revealed that scratch space in PC-3 cells was significantly increased in a dose-dependent manner in GSK126-treated groups[(247.2±24.4),(347.2±19.2) and (410.5±18.1) μm in low, medium and high dose (5.0, 20.0, 50.0 μmol/L), respectively] as compared with the control group[(171.3±17.8) μm](all<0.05). Transwell assay showed that migrated PC-3 cells in control group was 322.0±17.9,while those in GSK126-treated groups were 198.3±15.4 (low),82.7±6.2 (medium) and 30.2±4.1 (high), and the differences between the control group and GSK126-treated groups were significant(all<0.05). In addition, GSK126 up-regulated E-cadherin mRNA expression and down-regulated N-cadherin and Vimentin mRNA expression, whereas had no significant effect on Snail, Fibronectin and VEGF-A mRNA expression. The protein expression of E-cadherin was elevated but VEGF-A protein did not change in GSK126-treated groups. Similar results were exhibited in DU145 cell.GSK126 can significantly inhibit cell migration and invasion in prostate cancer PC-3 and DU145 cells, which may be resulted from its effect on epithelial-mesenchymal transition. GSK126 may be used as a potential anti-prostate cancer dug in clinic.
Apoptosis
;
drug effects
;
Cadherins
;
analysis
;
drug effects
;
metabolism
;
Cell Line, Tumor
;
drug effects
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
drug effects
;
Down-Regulation
;
drug effects
;
Drug Screening Assays, Antitumor
;
methods
;
Enhancer of Zeste Homolog 2 Protein
;
analysis
;
drug effects
;
metabolism
;
Fibronectins
;
analysis
;
drug effects
;
metabolism
;
Humans
;
Indoles
;
pharmacology
;
Male
;
Prostatic Neoplasms
;
chemistry
;
genetics
;
physiopathology
;
Pyridones
;
pharmacology
;
RNA, Messenger
;
Up-Regulation
;
drug effects
;
Vascular Endothelial Growth Factor A
;
analysis
;
drug effects
;
Vimentin
;
analysis
;
drug effects
;
metabolism
5.Effect of DPP4 inhibitor sitagliptin on expressions of early growth response-1 and fibronectin in the kidney of ApoE gene knockout mice.
Wenqi LI ; Meiping GUAN ; Zongji ZHENG ; Yaoming XUE
Journal of Southern Medical University 2016;36(1):126-130
OBJECTIVETo investigate the effects of the DPP4 inhibitor sitagliptin on the expressions of early growth response-1 (Egr-1) and fibronectin in the kidney of ApoE gene knockout mice.
METHODSEight-week-old male ApoE gene knockout mice were randomly divided into sitagliptin + apoE(-/-) group and apoE(-/-) group (n=6), with 6 C57BL mice as the normal control group. After feeding with high-fat diet and drug treatment for 16 weeks, the mice underwent intraperitoneal glucose tolerance test (IPGTT) and were measured for 24-h urinary albumin using ELISA. All the mice were then sacrificed to examine the changes of blood lipid profile and for detection of Egr-1 and fibronectin mRNA and proteins in the renal tissue using real-time PCR and Western blotting.
RESULTSThe mice in both apoE(-/-) group and sitagliptin+apoE(-/-) group all showed prominently increased blood lipids as compared with the control group (P<0.05) without significant differences between the two apoE(-/-) groups. The level of HDL was significantly higher in sitagliptin +apoE(-/-) group than in apoE(-/-) group (P<0.001) and control group (P<0.001). IPGTT showed no significant differences in the levels of blood glucose among the 3 groups. The excretion of urinary albumin was increased in apoE(-/-) group compared with the control group (P<0.01), but was significantly lower in sitagliptin+ apoE(-/-) group than in apoE(-/-) group (P<0.01). Real-time PCR and Western blotting showed significantly decreased mRNA and protein expressions of renal cortical Egr-1 and fibronectin in sitagliptin+apoE(-/-) group compared with apoE(-/-) group.
CONCLUSIONSitagliptin can reduce the renal expression of fibronectin by regulating the expression of Egr-1 to achieve renal protection.
Animals ; Apolipoproteins E ; genetics ; Diet, High-Fat ; Dipeptidyl-Peptidase IV Inhibitors ; pharmacology ; Early Growth Response Protein 1 ; metabolism ; Fibronectins ; metabolism ; Gene Knockout Techniques ; Kidney ; metabolism ; Lipids ; blood ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Real-Time Polymerase Chain Reaction ; Sitagliptin Phosphate ; pharmacology
6.Effect of ligustrazine nanoparticles nano spray on transforming growth factor-β/Smad signal pathway of rat peritoneal mesothelial cells induced by tumor necrosis factor-α.
Shuai YAN ; Lan YANG ; Yin-Zi YUE ; Wen-Lin LI ; Li ZENG ; Jin YUE ; Chun-Qin MAO
Chinese journal of integrative medicine 2016;22(8):629-634
OBJECTIVETo study the effect of ligustrazine nanoparticles nano spray (LNNS) on transforming growth factor β (TGF-β)/Smad signal protein of rat peritoneal mesothelial cells (RPMC) induced by tumor necrosis factor α (TNF-α), and the anti-adhesion mechanism of LNNS in the abdominal cavity.
METHODSThe primary culture and subculture of rat peritoneal mesothelial cells (RPMC) was processed by trypsin digestion method in vitro. The third generation was identifified for experiment and divided into 5 groups: a blank group: RPMC without treatment; a control group: RPMC stimulated with TNF-α; RPMC treated by a low-dosage LNNS group (2.5 mg/L); RPMC treated by a medium-dosage LNNS group (5 mg/L); and RPMC treated by a high-dosage LNNS group (10 mg/L). Reverse transcription-polymerase chain reaction was applied to test the expression of fifibronectin, collagen I (COL-I), TGF-β mRNA, and Western blot method to test the Smad protein 7 expression of RPMC.
RESULTSCompared with the blank group, a signifificant elevation in fifibronectin (FN), COL-I and TGF-β mRNA expression of RPMC were observed in the control group (P<0.05). Compared with the control group, LNNS suppressed the expressions of FN, COL-I and TGF-β mRNA in a concentrationdependent manner (P<0.05). The expression of Smad7 protein of RPMC was down-regulated by TNF-α stimulation, and up-regulated with the increase of LNNS dose (P<0.05).
CONCLUSIONSTNF-α may induce changes in RPMC's viability, leading to peritoneal injury. LNNS could reverse the induction of fifibrosis related cytokine FN, COL-I and TGF-β, up-regulating the expression of Smad7 by TNF-α in RPMC, thus attenuate peritoneal injury by repairing mesothelial cells.
Animals ; Collagen Type I ; genetics ; metabolism ; Epithelium ; drug effects ; metabolism ; Fibronectins ; metabolism ; Male ; Nanoparticles ; chemistry ; ultrastructure ; Particle Size ; Peritoneal Cavity ; cytology ; Pyrazines ; pharmacology ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley ; Signal Transduction ; drug effects ; Smad Proteins ; metabolism ; Transforming Growth Factor beta ; genetics ; metabolism ; Tumor Necrosis Factor-alpha ; pharmacology
7.Effect of Moutan Cortex on AGEs-induced mesangial cell proliferation and basement membrane thickening.
Ming-Hua ZHANG ; Liang FENG ; Jun-Fei GUN ; Jun JIANG ; Xiao-Bin JIA
China Journal of Chinese Materia Medica 2014;39(3):478-482
OBJECTIVETo investigate the effect of Moutan Cortex on mesangial proliferation and basement membrane thickening induced by advanced glycation end products (AGEs).
METHODThe glomerular mesangial cells (MC) injury model was established by inducing by AGEs. The cell were divided into 6 groups: the blank group ( BSA, 200 mg L-1) , the model group (AGEs, 200 mg L-1), the positive control group (AG, 10 mmol L L-1), and drug administration groups, namely the Moutan Cortex-treated high-dose group (2 x 10(-4) g mL(- 1)), the Moutan Cortex-treated medium-dose group (1 x 10(-4) g mL-1 ), and the Moutan Cortex-treated low-dose group (0. 5 x 10(-4) g . mL(-1)). The MTT method was performed to observe the effect of Moutan Cortex on the proliferation of MC. The content of fibronectin (FN) and collagen secretion 1V (Col IV) in cell supernatant were detected by ELISA kits. The western blot analysis was carried out to observe the FN expression. The Real-time PCR analysis was applied to examine the Col IV mRNA expression.
RESULTAGEs significantly increased AGEs-induced MC proliferation and FN and Col 1V secretion. The western blot analysis showed that MC could down-regulate the FN expression of MC secretion. According to the results of the real-time PCR assay, MC could down-regulate AGEs-induced MC secretion Col IV mRNA expression.
CONCLUSIONMC had a certain protective effect on MC cultured under AGEs conditions. MC could remarkably inhibit the composition and secretion of Col IV and FN in matrix and the basement membrane thickening, and provide an experimental basis for the treatment of diabetic nephropathy.
Animals ; Basement Membrane ; drug effects ; metabolism ; Cell Line ; Cell Proliferation ; drug effects ; Collagen Type IV ; genetics ; secretion ; Drugs, Chinese Herbal ; pharmacology ; Fibronectins ; biosynthesis ; Gene Expression Regulation ; drug effects ; Glycation End Products, Advanced ; adverse effects ; Mesangial Cells ; cytology ; drug effects ; metabolism ; secretion ; Paeonia
8.Expression of cellular fibronectin mRNA in adult periodontitis and peri-implantitis: a real-time polymerase chain reaction study.
Yan-Yun WU ; Huan-Huan CAO ; Ning KANG ; Ping GONG ; Guo-Min OU
International Journal of Oral Science 2013;5(4):212-216
Cellular fibronectin (cFn) is a type of bioactive non-collagen glycoprotein regarded as the main substance used to maintain periodontal attachment. The content of cFn in some specific sites can reflect the progress of periodontitis or peri-implantitis. This study aims to evaluate the expression of cFn messenger RNA (mRNA) in tissues of adult periodontitis and peri-implantitis by real-time fluorescent quantitative polymerase chain reaction (PCR) and to determine its clinical significance. A total of 30 patients were divided into three groups of 10: healthy, adult periodontitis and peri-implantitis. Periodontal tissue biopsies (1 mm×1 mm×1 mm) from each patient were frozen in liquid nitrogen. Total RNA was extracted from these tissues, and the content, purity and integrity were detected. Specific primers were designed according to the sequence, and the mRNA expression levels of cellular fibronectin were detected by real-time PCR. The purity and integrity of the extracted total RNA were both high, and the specificity of amplified genes was very high with no other pollution. The mRNA expression of cFn in the adult periodontitis group (1.526±0.441) was lower than that in the healthy group (3.253±0.736). However, the mRNA expression of cFn in the peri-implantitis group (3.965±0.537) was significantly higher than that in the healthy group. The difference revealed that although both processes were destructive inflammatory reactions in the periodontium, the pathomechanisms were different and the variation started from the transcription level of the cFn gene.
Adult
;
Alveolar Bone Loss
;
metabolism
;
Female
;
Fibronectins
;
analysis
;
genetics
;
Gingiva
;
metabolism
;
Humans
;
Male
;
Middle Aged
;
Peri-Implantitis
;
metabolism
;
Periodontal Attachment Loss
;
metabolism
;
Periodontal Index
;
Periodontal Pocket
;
metabolism
;
Periodontitis
;
metabolism
;
Periodontium
;
metabolism
;
RNA, Messenger
;
analysis
;
Real-Time Polymerase Chain Reaction
;
Transcription, Genetic
;
genetics
;
Young Adult
9.Dexamethasone enhances invasiveness of Aspergillus fumigatus conidia and fibronectin expression in A549 cells.
Tao LI ; Jing-Chao LI ; Qian QI ; Yu LI
Chinese Medical Journal 2013;126(17):3289-3294
BACKGROUNDThe efficacies of current treatments for invasive aspergillus (IA) are unsatisfactory and new therapeutic targets or regimens to treat IA are urgently needed. Previous studies have indicated that the ability of conidia to invade host cells is critical in IA development and fibronectin has a hand in the conidia adherence process. In the clinical setting, many patients who receive glucocorticoid for extended periods are susceptible to Aspergillus fumigatus (A. fumigatus) infection, for this reason we investigated the effect of glucocorticoid on conidia invasiveness by comparing the invasiveness of A. fumigatus conidia in the type II human alveolar cell line (A549) cultured with different concentrations of dexamethasone. We also explored the relationships between dexamethasone and fibronectin expression.
METHODSFollowing culture with anti-fibronectin antibodies and/or dexamethasone, type II human alveolar A549 cells were infected with conidia of A. fumigatus. After 4 hours, the extracellular free conidia were washed away and the remaining immobilized conidia were released using Triton-X 100 and quantified by counting the colony-forming units. The invasiveness of conidia was measured by calculating the invasion rate (%). The transcription of the fibronectin gene in cells cultured with different concentrations of dexamethasone for 24 hours was tested by fluorogenic quantitative RT-PCR while the expression of fibronectinin cells cultured for 48 hours was tested by Western blotting and immunocytochemistry.
RESULTSA significant reduction in the invasiveness of conidia was seen in the cells cultured with anti-fibronectin antibody ((14.42 ± 1.68)% vs. (19.17 ± 2.53)%, P < 0.05), but no significant difference was observed in cells cultured with a combination of anti-fibronectin antibody and dexamethasone (6.37 ± 10(-5) mol/L). There was no correlation between the dexamethasone concentration and the invasiveness of conidia after dexamethasone pretreatment of cells for 4 hours. In contrast, after pretreated for 24 hours, the invasiveness of conidia in the presence of 6.37×10(-5) mol/L dexamethasone ((24.66 ± 2.41)%) was higher than for the control ((19.17 ± 2.53)%) and the 0.25×10(-5) mol/L group ((19.93 ± 3.06)%), and the invasiveness in the 1.27×10(-5) mol/L group ((22.47 ± 2.46)%) was also higher than in the control, P < 0.05. The relative transcripts of the fibronectin gene after exposure to 6.37×10(-5) mol/L dexamethasone (9.19×10(-3)±1.2×10(-3)) was higher than for the control (4.61×10(-3)± 1.54×10(-3)) and the 0.25×10(-5) mol/L group (6.20×10(-3)± 1.93×10(-3)), and expression in the 1.27×10(-5) mol/L group (7.94×10(-3)± 2.24×10(-3)) was also higher than for the control, P < 0.05. High concentrations of dexamethasone promoted fibronectin production after culture for 48 hours.
CONCLUSIONSDexamethasone can increase invasiveness of A. fumigatus conidia by promoting fibronectin expression. This may partially explain why patients who are given large doses of glucocorticoids for extended periods are more susceptible to A. fumigatus infection.
Aspergillus fumigatus ; pathogenicity ; Cell Line, Tumor ; Dexamethasone ; pharmacology ; Fibronectins ; genetics ; metabolism ; Gene Expression ; drug effects ; Humans
10.The Genetically Modified Polysialylated Form of Neural Cell Adhesion Molecule-Positive Cells for Potential Treatment of X-Linked Adrenoleukodystrophy.
Jiho JANG ; Han Soo KIM ; Joon Won KANG ; Hoon Chul KANG
Yonsei Medical Journal 2013;54(1):246-252
PURPOSE: Cell transplantation of myelin-producing exogenous cells is being extensively explored as a means of remyelinating axons in X-linked adrenoleukodystrophy. We determined whether 3,3',5-Triiodo-L-thyronine (T3) overexpresses the ABCD2 gene in the polysialylated (PSA) form of neural cell adhesion molecule (NCAM)-positive cells and promotes cell proliferation and favors oligodendrocyte lineage differentiation. MATERIALS AND METHODS: PSA-NCAM+ cells from newborn Sprague-Dawley rats were grown for five days on uncoated dishes in defined medium with or without supplementation of basic fibroblast growth factor (bFGF) and/or T3. Then, PSA-NCAM+ spheres were prepared in single cells and transferred to polyornithine/fibronectin-coated glass coverslips for five days to determine the fate of the cells according to the supplementation of these molecules. T3 responsiveness of ABCD2 was analyzed using real-time quantitative polymerase chain reaction, the growth and fate of cells were determined using 5-bromo-2-deoxyuridine incorporation and immunocytochemistry, respectively. RESULTS: Results demonstrated that T3 induces overexpression of the ABCD2 gene in PSA-NCAM+ cells, and can enhance PSA-NCAM+ cell growth in the presence of bFGF, favoring an oligodendrocyte fate. CONCLUSION: These results may provide new insights into investigation of PSA-NCAM+ cells for therapeutic application to X-linked adrenoleukodystrophy.
ATP-Binding Cassette Transporters/*metabolism
;
Adrenoleukodystrophy/genetics/*therapy
;
Animals
;
Animals, Newborn
;
Bromodeoxyuridine
;
Cell Differentiation
;
Fibroblast Growth Factor 2/pharmacology
;
Fibronectins/metabolism
;
Immunohistochemistry
;
Neural Cell Adhesion Molecules/*genetics
;
Rats
;
Rats, Sprague-Dawley
;
Real-Time Polymerase Chain Reaction
;
Sialic Acids/metabolism
;
Stem Cells
;
Thyroid Hormones/*metabolism
;
Triiodothyronine/pharmacology

Result Analysis
Print
Save
E-mail