1.Isolation, culture and validation of CD34+ vascular wall-resident stem cells from mice.
Li-Ju YANG ; Ying MA ; Yuan LI ; Qing-Ya DANG ; Jun CHENG ; Yan YANG ; Peng-Yun LI
Acta Physiologica Sinica 2023;75(2):205-215
		                        		
		                        			
		                        			Vascular wall-resident stem cells (VW-SCs) play a critical role in maintaining normal vascular function and regulating vascular repair. Understanding the basic functional characteristics of the VW-SCs will facilitate the study of their regulation and potential therapeutic applications. The aim of this study was to establish a stable method for the isolation, culture, and validation of the CD34+ VW-SCs from mice, and to provide abundant and reliable cell sources for further study of the mechanisms involved in proliferation, migration and differentiation of the VW-SCs under various physiological and pathological conditions. The vascular wall cells of mouse aortic adventitia and mesenteric artery were obtained by the method of tissue block attachment and purified by magnetic microbead sorting and flow cytometry to obtain the CD34+ VW-SCs. Cell immunofluorescence staining was performed to detect the stem cell markers (CD34, Flk-1, c-kit, Sca-1), smooth muscle markers (SM22, SM MHC), endothelial marker (CD31), and intranuclear division proliferation-related protein (Ki-67). To verify the multipotency of the isolated CD34+ VW-SCs, endothelial differentiation medium EBM-2 and fibroblast differentiation medium FM-2 were used. After culture for 7 days and 3 days respectively, endothelial cell markers and fibroblast markers of the differentiated cells were evaluated by immunofluorescence staining and q-PCR. Furthermore, the intracellular Ca2+ release and extracellular Ca2+ entry signaling were evaluated by TILLvisION system in Fura-2/AM loaded cells. The results showed that: (1) High purity (more than 90%) CD34+ VW-SCs from aortic adventitia and mesenteric artery of mice were harvested by means of tissue block attachment method and magnetic microbead sorting; (2) CD34+ VW-SCs were able to differentiate into endothelial cells and fibroblasts in vitro; (3) Caffeine and ATP significantly activated intracellular Ca2+ release from endoplasmic reticulum of CD34+ VW-SCs. Store-operated Ca2+ entry (SOCE) was activated by using thapsigargin (TG) applied in Ca2+-free/Ca2+ reintroduction protocol. This study successfully established a stable and efficient method for isolation, culture and validation of the CD34+ VW-SCs from mice, which provides an ideal VW-SCs sources for the further study of cardiovascular diseases.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Endothelial Cells
		                        			;
		                        		
		                        			Cell Differentiation/physiology*
		                        			;
		                        		
		                        			Stem Cells
		                        			;
		                        		
		                        			Adventitia
		                        			;
		                        		
		                        			Fibroblasts
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Antigens, CD34/metabolism*
		                        			
		                        		
		                        	
2.Regulatory effects of bio-intensity electric field on transformation of human skin fibroblasts.
Wen Ping WANG ; Ran JI ; Ze ZHANG ; Ya Ting WU ; Heng Shu ZHANG ; Qiong ZHANG ; Xu Pin JIANG ; Miao TENG
Chinese Journal of Burns 2022;38(4):354-362
		                        		
		                        			
		                        			Objective: To investigate the regulatory effects of bio-intensity electric field on the transformation of human skin fibroblasts (HSFs). Methods: The experimental research methods were used. HSFs were collected and divided into 200 mV/mm electric field group treated with 200 mV/mm electric field for 6 h and simulated electric field group placed in the electric field device without electricity for 6 h. Changes in morphology and arrangement of cells were observed in the living cell workstation; the number of cells at 0 and 6 h of treatment was recorded, and the rate of change in cell number was calculated; the direction of cell movement, movement velocity, and trajectory velocity within 3 h were observed and calculated (the number of samples was 34 in the simulated electric field group and 30 in 200 mV/mm electric field group in the aforementioned experiments); the protein expression of α-smooth muscle actin (α-SMA) in cells after 3 h of treatment was detected by immunofluorescence method (the number of sample was 3). HSFs were collected and divided into simulated electric field group placed in the electric field device without electricity for 3 h, and 100 mV/mm electric field group, 200 mV/mm electric field group, and 400 mV/mm electric field group which were treated with electric fields of corresponding intensities for 3 h. Besides, HSFs were divided into simulated electric field group placed in the electric field device without electricity for 6 h, and electric field treatment 1 h group, electric field treatment 3 h group, and electric field treatment 6 h group treated with 200 mV/mm electric field for corresponding time. The protein expressions of α-SMA and proliferating cell nuclear antigen (PCNA) were detected by Western blotting (the number of sample was 3). Data were statistically analyzed with Mann-Whitney U test, one-way analysis of variance, independent sample t test, and least significant difference test. Results: After 6 h of treatment, compared with that in simulated electric field group, the cells in 200 mV/mm electric field group were elongated in shape and locally adhered; the cells in simulated electric field group were randomly arranged, while the cells in 200 mV/mm electric field group were arranged in a regular longitudinal direction; the change rates in the number of cells in the two groups were similar (P>0.05). Within 3 h of treatment, the cells in 200 mV/mm electric field group had an obvious tendency to move toward the positive electrode, and the cells in simulated electric field group moved around the origin; compared with those in simulated electric field group, the movement velocity and trajectory velocity of the cells in 200 mV/mm electric field group were increased significantly (with Z values of -5.33 and -5.41, respectively, P<0.01), and the directionality was significantly enhanced (Z=-4.39, P<0.01). After 3 h of treatment, the protein expression of α-SMA of cells in 200 mV/mm electric field group was significantly higher than that in simulated electric field group (t=-9.81, P<0.01). After 3 h of treatment, the protein expressions of α-SMA of cells in 100 mV/mm electric field group, 200 mV/mm electric field group, and 400 mV/mm electric field group were 1.195±0.057, 1.606±0.041, and 1.616±0.039, respectively, which were significantly more than 0.649±0.028 in simulated electric field group (P<0.01). Compared with that in 100 mV/mm electric field group, the protein expressions of α-SMA of cells in 200 mV/mm electric field group and 400 mV/mm electric field group were significantly increased (P<0.01). The protein expressions of α-SMA of cells in electric field treatment 1 h group, electric field treatment 3 h group, and electric field treatment 6 h group were 0.730±0.032, 1.561±0.031, and 1.553±0.045, respectively, significantly more than 0.464±0.020 in simulated electric field group (P<0.01). Compared with that in electric field treatment 1 h group, the protein expressions of α-SMA in electric field treatment 3 h group and electric field treatment 6 h group were significantly increased (P<0.01). After 3 h of treatment, compared with that in simulated electric field group, the protein expressions of PCNA of cells in 100 mV/mm electric field group, 200 mV/mm electric field group, and 400 mV/mm electric field group were significantly decreased (P<0.05 or P<0.01); compared with that in 100 mV/mm electric field group, the protein expressions of PCNA of cells in 200 mV/mm electric field group and 400 mV/mm electric field group were significantly decreased (P<0.05 or P<0.01); compared with that in 200 mV/mm electric field group, the protein expression of PCNA of cells in 400 mV/mm electric field group was significantly decreased (P<0.01). Compared with that in simulated electric field group, the protein expressions of PCNA of cells in electric field treatment 1 h group, electric field treatment 3 h group, and electric field treatment 6 h group were significantly decreased (P<0.01); compared with that in electric field treatment 1 h group, the protein expressions of PCNA of cells in electric field treatment 3 h group and electric field treatment 6 h group were significantly decreased (P<0.05 or P<0.01); compared with that in electric field treatment 3 h group, the protein expression of PCNA of cells in electric field treatment 6 h group was significantly decreased (P<0.01). Conclusions: The bio-intensity electric field can induce the migration of HSFs and promote the transformation of fibroblasts to myofibroblasts, and the transformation displays certain dependence on the time and intensity of electric field.
		                        		
		                        		
		                        		
		                        			Actins/biosynthesis*
		                        			;
		                        		
		                        			Cell Differentiation/physiology*
		                        			;
		                        		
		                        			Cell Movement/physiology*
		                        			;
		                        		
		                        			Electric Stimulation Therapy
		                        			;
		                        		
		                        			Electricity
		                        			;
		                        		
		                        			Fibroblasts/physiology*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Myofibroblasts/physiology*
		                        			;
		                        		
		                        			Proliferating Cell Nuclear Antigen/biosynthesis*
		                        			;
		                        		
		                        			Skin/cytology*
		                        			
		                        		
		                        	
3.Research advances on interleukin-6 in hypertrophic scar formation.
Zu Han CHEN ; Bin YU ; Qi Fa YE ; Yan Feng WANG
Chinese Journal of Burns 2022;38(9):874-877
		                        		
		                        			
		                        			Hypertrophic scar is a pathological repair result of excessive accumulation of extracellular matrix after skin damage, which affects the appearance and function of patients with varying degrees. The degree of scar formation is directly related to the strength of inflammatory reaction during wound healing, and excessive or prolonged inflammatory response increases the incidence of hypertrophic scars. Interleukin-6 (IL-6) is a pleiotropic cytokine that is involved in regulating the fibrotic network composed of fibroblasts, macrophages, keratinocytes, and vascular endothelial cells, and is closely related to the formation of hypertrophic scars. This article reviews the role of IL-6 and its signaling pathway in hypertrophic scar formation.
		                        		
		                        		
		                        		
		                        			Cicatrix, Hypertrophic/pathology*
		                        			;
		                        		
		                        			Endothelial Cells/metabolism*
		                        			;
		                        		
		                        			Fibroblasts/metabolism*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			Skin/pathology*
		                        			;
		                        		
		                        			Wound Healing/physiology*
		                        			
		                        		
		                        	
4.Effects of mitochondrial aldehyde dehydrogenase 2 on autophagy-associated proteins in neonatal rat myocardial fibroblasts cultured in high glucose.
Bi TANG ; Pinfang KANG ; Jianlu GUO ; Lei ZHU ; Qingmei XU ; Qin GAO ; Heng ZHANG ; Hongju WANG
Journal of Southern Medical University 2019;39(5):523-527
		                        		
		                        			OBJECTIVE:
		                        			To investigate whether autophagy mediates the effects of aldehyde dehydrogenase 2 (ALDH2) on the proliferation of neonatal rat cardiac fibroblasts cultured in high glucose.
		                        		
		                        			METHODS:
		                        			Cardiac fibroblasts were isolated from neonatal (within 3 days) SD rats and subcultured. The fibroblasts of the third passage, after identification with immunofluorescence staining for vimentin, were treated with 5.5 mmol/L glucose (control group), 30 mmol/L glucose (high glucose group), or 30 mmol/L glucose in the presence of Alda-1 (an ALDH2 agonist), daidzin (an ALDH2 2 inhibitor), or both. Western blotting was employed to detect ALDH2, microtubule-associated protein 1 light chain 3B subunit (LC3B) and Beclin-1 in the cells, and a hydroxyproline detection kit was used for determining hydroxyproline content in cell culture medium; CCK- 8 kit was used for assessing the proliferation ability of the cardiac fibroblasts after the treatments.
		                        		
		                        			RESULTS:
		                        			Compared with the control cells, the cells exposed to high glucose exhibited obviously decreased expressions of ALDH2, Beclin-1 and LC3B and increased cell number and hydroxyproline content in the culture medium. Treatment of the high glucose-exposed cells with Alda-1 significantly increased Beclin-1, LC3B, and ALDH2 protein expressions and lowered the cell number and intracellular hydroxyproline content, whereas the application of daidzin resulted in reverse changes in the expressions of ALDH2, Beclin-1 and LC3B, viable cell number and intracellular hydroxyproline content in high glucose-exposed cells.
		                        		
		                        			CONCLUSIONS
		                        			Mitochondrial ALDH2 inhibits the proliferation of neonatal rat cardiac fibroblasts induced by high glucose, and the effect is possibly mediated by the up-regulation of autophagy-related proteins Beclin-1 and LC3B.
		                        		
		                        		
		                        		
		                        			Aldehyde Dehydrogenase
		                        			;
		                        		
		                        			Aldehyde Dehydrogenase, Mitochondrial
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Animals, Newborn
		                        			;
		                        		
		                        			Autophagy
		                        			;
		                        		
		                        			Beclin-1
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Fibroblasts
		                        			;
		                        		
		                        			Glucose
		                        			;
		                        		
		                        			Microtubule-Associated Proteins
		                        			;
		                        		
		                        			Mitochondrial Proteins
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			
		                        		
		                        	
5.Article Effect and Mechanism of Ganoderma lucidum Polysaccharides on Human Fibroblasts and Skin Wound Healing in Mice.
Feng HU ; Yu YAN ; Chu-Wang WANG ; Yu LIU ; Jing-Jing WANG ; Fang ZHOU ; Qing-Hai ZENG ; Xiao ZHOU ; Jia CHEN ; Ai-Jun WANG ; Jian-da ZHOU
Chinese journal of integrative medicine 2019;25(3):203-209
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effects of Ganoderma lucidum polysaccharides (GL-PS) on human fibroblasts and skin wound healing in Kunming male mice and to explore the putative molecular mechanism.
		                        		
		                        			METHODS:
		                        			Primary human skin fibroblasts were cultured. The viability of fibroblasts treated with 0, 10, 20, 40, 80, and 160 μg/mL of GL-PS, respectively were detected by 3-4,5-dimethyl-2-thiazolyl-2,5-diphenyl-2-Htetrazolium bromide (MTT). The migration ability of fibroblasts treated with 0, 10, 20, and 40 μg/mL of GL-PS were measured by transwell assay. The secretion of the C-terminal peptide of procollagen type I (CICP) and transforming growth factor-β1 (TGF-β1) in the cell supernatant was tested by enzyme-linked immunosorbent assay. The expression of β-catenin was detected by Western blot. Furthermore, the Kunming mouse model with full-layer skin resection trauma was established, and was treated with 10, 20, and 40 mg/mL of GL-PS, respectively as external use. The size of the wound was measured daily, complete healing time in each group was recorded and the percentage of wound contraction was calculated.
		                        		
		                        			RESULTS:
		                        			Compared with the control group, 10, 20, and 40 μg/mL of GL-PS significantly increased the viability of fibroblasts, promoted the migration ability of fibroblasts, and up-regulated the expressions of CICP and TGF-β1 in fibroblasts (Plt;0.05 or Plt;0.01). The expression of β-catenin in fibroblasts treated with 20 and 40 μg/mL of GL-PS was significantly higher than that of the control group (Plt;0.01). Furthermore, after external use of 10, 20, and 40 mg/mL of GL-PS, the rates of wound healing in mice were significantly higher and the wound healing time was significantly less than the control group (Plt;0.05 or Plt;0.01).
		                        		
		                        			CONCLUSION
		                        			A certain concentration of GL-PS may promote wound healing via activation of the Wnt/β-catenin signaling pathway and up-regulation of TGF-β1, which might serve as a promising source of skin wound healing.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Collagen Type I
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			Fibroblasts
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Polysaccharides
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Reishi
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Skin
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			injuries
		                        			;
		                        		
		                        			Transforming Growth Factor beta1
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Wound Healing
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			beta Catenin
		                        			;
		                        		
		                        			physiology
		                        			
		                        		
		                        	
6.Cardiac Fibroblast-Specific Activating Transcription Factor 3 Promotes Myocardial Repair after Myocardial Infarction.
Yu-Lin LI ; Wen-Jing HAO ; Bo-Ya CHEN ; Jing CHEN ; Guo-Qi LI
Chinese Medical Journal 2018;131(19):2302-2309
BackgroundMyocardial ischemia injury is one of the leading causes of death and disability worldwide. Cardiac fibroblasts (CFs) have central roles in modulating cardiac function under pathophysiological conditions. Activating transcription factor 3 (ATF3) plays a self-protective role in counteracting CF dysfunction. However, the precise function of CF-specific ATF3 during myocardial infarction (MI) injury/repair remains incompletely understood. The aim of this study was to determine whether CF-specific ATF3 affected cardiac repair after MI.
MethodsFifteen male C57BL/6 wild-type mice were performed with MI operation to observe the expression of ATF3 at 0, 0.5, 1.0, 3.0, and 7.0 days postoperation. Model for MI was constructed in ATF3TGfl/flCol1a2-Cre+ (CF-specific ATF3 overexpression group, n = 5) and ATF3TGfl/flCol1a2-Cre- male mice (without CF-specific ATF3 overexpression group, n = 5). In addition, five mice of ATF3TGfl/flCol1a2-Cre+ and ATF3TGfl/flCol1a2-Cre- were subjected to sham MI operation. Heart function was detected by ultrasound and left ventricular remodeling was observed by Masson staining (myocardial fibrosis area was detected by blue collagen deposition area) at the 28 day after MI surgery in ATF3TGfl/flCol1a2-Cre+ and ATF3TGfl/flCol1a2-Cre- mice received sham or MI operation. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect cell proliferation/cell cycle-related gene expression in cardiac tissue. BrdU staining was used to detect fibroblast proliferation.
ResultsAfter establishment of an MI model, we found that ATF3 proteins were increased in the heart of mice after MI surgery and dominantly expressed in CFs. Genetic overexpression of ATF3 in CFs (ATF3TGfl/flCol1a2-Cre+ group) resulted in an improvement in the heart function as indicated by increased cardiac ejection fraction (41.0% vs. 30.5%, t = 8.610, P = 0.001) and increased fractional shortening (26.8% vs. 18.1%, t = 7.173, P = 0.002), which was accompanied by a decrease in cardiac scar area (23.1% vs. 11.0%, t = 8.610, P = 0.001). qRT-PCR analysis of CFs isolated from ATF3TGfl/flCol1a2-Cre+ and ATF3TGfl/flCol1a2-Cre- ischemic hearts revealed a distinct transcriptional profile in ATF3-overexpressing CFs, displaying pro-proliferation properties. BrdU-positive cells significantly increased in ATF3-overexpressing CFs than control CFs under angiotensin II stimuli (11.5% vs. 6.8%, t = 31.599, P = 0.001) or serum stimuli (31.6% vs. 20.1%, t = 31.599, P = 0.001). The 5(6)-carboxyfluorescein N-hydroxysuccinimidyl ester assay showed that the cell numbers of the P2 and P3 generations were higher in the ATF3-overexpressing CFs at 24 h (P2: 91.6% vs. 71.8%, t = 8.465, P = 0.015) and 48 h (P3: 81.6% vs. 51.1%, t = 9.029, P = 0.012) after serum stimulation. Notably, ATF3 overexpression-induced CF proliferation was clearly increased in the heart after MI injury.
ConclusionsWe identify that CF-specific ATF3 might contribute to be MI repair through upregulating the expression of cell cycle/proliferation-related genes and enhancing cell proliferation.
Activating Transcription Factor 3 ; physiology ; Animals ; Disease Models, Animal ; Fibroblasts ; physiology ; Fibrosis ; Male ; Mice ; Mice, Inbred C57BL ; Myocardial Infarction ; Myocardium ; Ventricular Remodeling
7.Effects of Adipose-derived Mesenchymal Stem Cell Exosomes on Corneal Stromal Fibroblast Viability and Extracellular Matrix Synthesis.
Ting SHEN ; ; Qing-Qing ZHENG ; Jiang SHEN ; Qiu-Shi LI ; Xing-Hui SONG ; Hong-Bo LUO ; Chao-Yang HONG ; ; Ke YAO
Chinese Medical Journal 2018;131(6):704-712
BackgroundCorneal stromal cells (CSCs) are components of the corneal endothelial microenvironment that can be induced to form a functional tissue-engineered corneal endothelium. Adipose-derived mesenchymal stem cells (ADSCs) have been reported as an important component of regenerative medicine and cell therapy for corneal stromal damage. We have demonstrated that the treatment with ADSCs leads to phenotypic changes in CSCs in vitro. However, the underlying mechanisms of such ADSC-induced changes in CSCs remain unclear.
MethodsADSCs and CSCs were isolated from New Zealand white rabbits and cultured in vitro. An Exosome Isolation Kit, Western blotting, and nanoparticle tracking analysis (NTA) were used to isolate and confirm the exosomes from ADSC culture medium. Meanwhile, the optimal exosome concentration and treatment time were selected. Cell Counting Kit-8 and annexin V-fluorescein isothiocyanate/propidium iodide assays were used to assess the effect of ADSC- derived exosomes on the proliferation and apoptosis of CSCs. To evaluate the effects of ADSC- derived exosomes on CSC invasion activity, Western blotting was used to detect the expression of matrix metalloproteinases (MMPs) and collagens.
Results:ADSCs and CSCs were successfully isolated from New Zealand rabbits. The optimal concentration and treatment time of exosomes for the following study were 100 μg/ml and 96 h, respectively. NTA revealed that the ADSC-derived exosomes appeared as nanoparticles (40-200 nm), and Western blotting confirmed positive expression of CD9, CD81, flotillin-1, and HSP70 versus ADSC cytoplasmic proteins (all P < 0.01). ADSC-derived exosomes (50 μg/ml and 100 μg/ml) significantly promoted proliferation and inhibited apoptosis (mainly early apoptosis) of CSCs versus non-exosome-treated CSCs (all P < 0.05). Interestingly, MMPs were downregulated and extracellular matrix (ECM)-related proteins including collagens and fibronectin were upregulated in the exosome-treated CSCs versus non-exosome-treated CSCs (MMP1: t = 80.103, P < 0.01; MMP2: t = 114.778, P < 0.01; MMP3: t = 56.208, P < 0.01; and MMP9: t = 60.617, P < 0.01; collagen I: t = -82.742, P < 0.01; collagen II: t = -72.818, P < 0.01; collagen III: t = -104.452, P < 0.01; collagen IV: t = -133.426, P < 0.01, and collagen V: t = -294.019, P < 0.01; and fibronectin: t = -92.491, P < 0.01, respectively).
Conclusion:The findings indicate that ADSCs might play an important role in CSC viability regulation and ECM remodeling, partially through the secretion of exosomes.
Adipose Tissue ; cytology ; Animals ; Cell Proliferation ; physiology ; Cell Survival ; physiology ; Cells, Cultured ; Exosomes ; metabolism ; Extracellular Matrix ; metabolism ; Fibroblasts ; cytology ; metabolism ; Matrix Metalloproteinases ; metabolism ; Mesenchymal Stromal Cells ; cytology ; metabolism ; Rabbits
8.Establishment and identification of cell lines from type O blood Korean native pigs and their efficiency in supporting embryonic development via somatic cell nuclear transfer
Anukul TAWEECHAIPAISANKUL ; Geon A KIM ; Jun Xue JIN ; Su Cheong YEOM ; Byeong Chun LEE
Journal of Veterinary Science 2018;19(4):492-499
		                        		
		                        			
		                        			Due to their similarities with humans in anatomy, physiology, and genetics miniature pigs are becoming an attractive model for biomedical research. We aim to establish and evaluate blood type O cells derived from Korean native pig (KNP), a typical miniature pig breed in Korea. Ten cell lines derived from 8 KNP piglets and one adult female KNP (kidney and ear tissues) were established. To confirm the presence of blood type O, genomic DNA, fucosyltransferase (FUT) expression, and immunofluorescence staining were examined. Additionally, fluorescence-activated cell sorting and somatic cell nuclear transfer were performed to investigate the normality of the cell lines and to evaluate their effectiveness in embryo development. We found no significant bands corresponding to specific blood group A, and no increase in FUT expression in cell lines derived from piglets No. 1, No. 4, No. 5, No. 8, and the adult female KNP; moreover, they showed normal levels of expression of α 1,3-galactosyltransferase and cytidine monophosphate-N-acetylneuraminic acid hydroxylase. There was no significant difference in embryo development between skin and kidney fibroblasts derived from the blood type O KNPs. In conclusion, we successfully established blood type O KNP cell lines, which may serve as a useful model in xenotransplantation research.
		                        		
		                        		
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cytidine
		                        			;
		                        		
		                        			DNA
		                        			;
		                        		
		                        			Ear
		                        			;
		                        		
		                        			Embryonic Development
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Fibroblasts
		                        			;
		                        		
		                        			Flow Cytometry
		                        			;
		                        		
		                        			Fluorescent Antibody Technique
		                        			;
		                        		
		                        			Genetics
		                        			;
		                        		
		                        			Heterografts
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Kidney
		                        			;
		                        		
		                        			Korea
		                        			;
		                        		
		                        			Physiology
		                        			;
		                        		
		                        			Pregnancy
		                        			;
		                        		
		                        			Skin
		                        			;
		                        		
		                        			Swine
		                        			;
		                        		
		                        			Swine, Miniature
		                        			;
		                        		
		                        			Transplantation, Heterologous
		                        			
		                        		
		                        	
9.Effect of Optimized Concentrations of Basic Fibroblast Growth Factor and Epidermal Growth Factor on Proliferation of Fibroblasts and Expression of Collagen: Related to Pelvic Floor Tissue Regeneration.
Yuan-Yuan JIA ; Jing-Yi ZHOU ; Yue CHANG ; Fang AN ; Xiao-Wei LI ; Xiao-Yue XU ; Xiu-Li SUN ; Chun-Yang XIONG ; Jian-Liu WANG
Chinese Medical Journal 2018;131(17):2089-2096
		                        		
		                        			Background:
		                        			Fibroblasts were the main seed cells in the studies of tissue engineering of the pelvic floor ligament. Basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) were widely studied but at various concentrations. This study aimed to optimize the concentrations of combined bFGF and EGF by evaluating their effects on proliferation and collagen secretion of fibroblasts.
		                        		
		                        			Methods:
		                        			Fibroblasts were differentiated from rat adipose mesenchymal stem cells (ADSCs). Flow cytometry and immunohistochemistry were used for cell identification. The growth factors were applied at concentrations of 0, 1, 10, and 100 ng/ml as three groups: (1) bFGF alone, (2) EGF alone, and (3) bFGF mixed with EGF. Cell proliferation was evaluated by Cell Counting Kit-8 assays. Expression of Type I and III collagen (Col-I and Col-III) mRNAs was evaluated by real-time quantitative reverse transcription-polymerase chain reaction. Statistical analysis was performed with SPSS software and GraphPad Prism using one-way analysis of variance and multiple t-test.
		                        		
		                        			Results:
		                        			ADSCs were successfully isolated from rat adipose tissue as identified by expression of typical surface markers CD29, CD44, CD90, and CD45 in flow cytometry. Fibroblasts induced from ADSC, compared with ADSCs, were with higher mRNA expression levels of Col I and Col III (F = 1.29, P = 0.0390). bFGF, EGF, and the mixture of bFGF with EGF can enhanced fibroblasts proliferation, and the concentration of 10 ng/ml of the mixture of bFGF with EGF displayed most effectively (all P < 0.05). The expression levels of Col-I and Col-III mRNAs in fibroblasts displayed significant increases in the 10 ng/ml bFGF combined with EGF group (all P < 0.05).
		                        		
		                        			Conclusions
		                        			The optimal concentration of both bFGF and EGF to promote cell proliferation and collagen expression in fibroblasts was 10 ng/ml at which fibroblasts grew faster and secreted more Type I and III collagens into the extracellular matrix, which might contribute to the stability of the pelvic floor microenvironment.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Collagen
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Epidermal Growth Factor
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Fibroblast Growth Factor 2
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Fibroblasts
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Pelvic Floor
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Regeneration
		                        			
		                        		
		                        	
10.Follistatin-Like 1 Promotes Bleomycin-Induced Pulmonary Fibrosis through the Transforming Growth Factor Beta 1/Mitogen-Activated Protein Kinase Signaling Pathway.
Yan-Kun JIN ; Xiao-He LI ; Wang WANG ; Jie LIU ; Wei ZHANG ; Yin-Shan FANG ; Zhi-Fei ZHANG ; Hua-Ping DAI ; Wen NING ; Chen WANG
Chinese Medical Journal 2018;131(16):1917-1925
		                        		
		                        			Background:
		                        			Follistatin-like 1 (FSTL1) is a novel profibrogenic factor that induces pulmonary fibrosis (PF) through the transforming growth factor-beta 1 (TGF-β1)/Smad signaling. Little is known about its effects on PF through the non-Smad signaling, like the mitogen-activated protein kinase (MAPK) pathway. Therefore, this study aimed to investigate the role of FSTL1 in PF through the MAPK signaling pathway and its mechanisms in lung fibrogenesis.
		                        		
		                        			Methods:
		                        			PF was induced in Fstl1and wild-type (WT) C57BL/6 mice with bleomycin. After 14 days, the mice were sacrificed, and lung tissues were stained with hematoxylin and eosin; the hydroxyproline content was measured to confirm PF. The mRNA and protein level of FSTL1 and the change of MAPK phosphorylation were measured by quantitative polymerase chain reaction and Western blotting. The effect of Fstl1 deficiency on fibroblasts differentiation was measured by Western blotting and cell immunofluorescence. MAPK signaling activation was measured by Western blotting in Fstl1 and WT fibroblasts treated with recombinant human FSTL1 protein. We pretreated mouse lung fibroblast cells with inhibitors of the extracellular signal-regulated kinase (ERK), p38, and Jun N-terminal kinase (JNK) signaling and analyzed their differentiation, proliferation, migration, and invasion by Western blotting, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis, and transwell assays. The Student's t-test was used to compare the differences between two groups.
		                        		
		                        			Results:
		                        			Fstl1 deficiency attenuated phosphorylation of the ERK, p38, and JNK signaling in bleomycin-induced fibrotic lung tissue 14 days after injury (0.67 ± 0.05 vs. 1.22 ± 0.03, t = 14.92, P = 0.0001; 0.41 ± 0.01 vs. 1.15 ± 0.07; t = 11.19; P = 0.0004; and 0.41 ± 0.01 vs. 1.07 ± 0.07, t = 8.92, P = 0.0009; respectively), compared with WT lungs at the same time and in primary lung fibroblasts (0.82 ± 0.01 vs. 1.01 ± 0.04, t = 4.06, P = 0.0150; 1.04 ± 0.03 vs. 1.24 ± 0.03, t = 4.44, P = 0.0100; and 0.76 ± 0.05 vs. 0.99 ± 0.05, t = 4.48, P = 0.0100; respectively), compared with TGF-β1-stimulated WT group. Recombinant human FSTL1 protein in lung fibroblasts enhanced TGF-β1-mediated phosphorylation of the ERK (1.19 ± 0.08 vs. 0.55 ± 0.04, t = 6.99, P = 0.0020), p38 (1.18 ± 0.04 vs. 0.66 ± 0.03, t = 11.20, P = 0.0020), and JNK (1.11 ± 0.01 vs. 0.84 ± 0.04, t = 6.53, P = 0.0030), compared with the TGF-β1-stimulated WT group. Fstl1-deficient fibroblasts showed reduced alpha-smooth muscle actin (α-SMA) expression (0.70 ± 0.06 vs. 1.28 ± 0.11, t = 4.65, P = 0.0035, compared with the untreated WT group; 1.40 ± 0.05 vs. 1.76 ± 0.02, t = 6.31, P = 0.0007; compared with the TGF-β1-treated WT group). Compared with the corresponding condition in the control group, the TGF-β1/FSTL1-mediated α-SMA expression was significantly suppressed by pretreatment with an inhibitor of p38 (0.73 ± 0.01 vs. 1.13 ± 0.10, t = 3.92, P = 0.0078) and JNK (0.78 ± 0.03 vs. 1.08 ± 0.06, t = 4.40, P = 0.0046) signaling. The proliferation of mouse lung fibroblast cells (MLgs) significantly decreased after treatment of an inhibitor of p38 (0.30 ± 0.01 vs. 0.46 ± 0.03, t = 4.64, P = 0.0009), JNK (0.30 ± 0.01 vs. 0.49 ± 0.01, t = 12.84, P = 0.0001), and Smad2/3 (0.18 ± 0.02 vs. 0.46 ± 0.02, t = 12.69, P = 0.0001) signaling compared with the dimethylsulfoxide group. The migration and invasion cells of MLgs significantly decreased in medium pretreated with an inhibitor of p38 (70.17 ± 3.28 vs. 116.30 ± 7.11, t = 5.89, P = 0.0042 for the migratory cells; 19.87 ± 0.84 vs. 32.70 ± 0.95, t = 10.14, P = 0.0005 for the invasive cells), JNK (72.30 ± 3.85 vs. 116.30 ± 7.11, t = 5.44, P = 0.0056 for the migratory cells; 18.03 ± 0.94 vs. 32.70 ± 0.95, t = 11.00, P = 0.0004 for the invasive cells), and Smad2/3 (64.76 ± 1.41 vs. 116.30 ± 7.11, t = 7.11, P = 0.0021 for the migratory cells; 18.03 ± 0.94 vs. 32.70 ± 0.95, t = 13.29, P = 0.0002 for the invasive cells) signaling compared with the corresponding condition in the dimethylsulfoxide group.
		                        		
		                        			Conclusion
		                        			FSTL1 affects lung fibroblast differentiation, proliferation, migration, and invasion through p38 and JNK signaling, and in this way, it might influence the development of PF.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antibiotics, Antineoplastic
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			Bleomycin
		                        			;
		                        		
		                        			adverse effects
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Fibroblasts
		                        			;
		                        		
		                        			Follistatin
		                        			;
		                        		
		                        			Follistatin-Related Proteins
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Pulmonary Fibrosis
		                        			;
		                        		
		                        			chemically induced
		                        			;
		                        		
		                        			Transforming Growth Factor beta
		                        			;
		                        		
		                        			Transforming Growth Factor beta1
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			p38 Mitogen-Activated Protein Kinases
		                        			;
		                        		
		                        			drug effects
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail