1.Triptolide inhibits inflammatory response and migration of fibroblast like synovial cells in rheumatoid arthritis through the circRNA 0003353/JAK2/STAT3 signaling pathway.
Jie WANG ; Jian LIU ; Jian Ting WEN ; Xin WANG
Journal of Southern Medical University 2022;42(3):367-374
OBJECTIVE:
To investigate the effect of triptolide (TPL) on inflammatory response and migration of fibroblast like synovial cells (FLS) in rheumatoid arthritis (RA-FLS) and the mechanism of circular noncoding RNA (circRNA) 0003353 for mediating this effect.
METHODS:
We collected peripheral blood mononuclear cells (PBMCs) and serum samples from 50 hospitalized RA patients and 30 healthy individuals for detecting the expression of circRNA 0003353, immune and inflammatory indexes (ESR, CRP, RF, anti-CCP, IgA, IgG, IgM, C3, and C4) and DAS28 score. Cultured RA-FLS was treated with 10 ng/mL TPL and transfected with a circRNA 0003353 overexpression plasmid, and cell counting kit-8 (CCK-8) assay and Transwell assay were used to detect the changes in the viability and migration of the cells. Enzyme-linked immunosorbent assay (ELISA) was used to examine the cytokines IL-4, IL-6, and IL-17, and real-time fluorescence quantitative PCR (RT-qPCR) was performed to detect the expression of circRNA 003353; Western blotting was used to detect the expressions of p-JAK2, pSTAT3, JAK2 and STAT3 proteins in the treated cells.
RESULTS:
The expression of circRNA 0003353 was significantly increased in PBMCs from RA patients and showed a good performance in assisting the diagnosis of RA (AUC=90.5%, P < 0.001, 95% CI: 0.83-0.98). CircRNA 0003353 expression was positively correlated with ESR, RF and DAS28 (P < 0.05). Treatment with TPL significantly decreased the expression of circRNA 0003353, suppressed the viability and migration ability, decreased the expressions of IL-6 and IL-17, and increased the expression IL-4 in cultured RA-FLS in a time-dependent manner (P < 0.01). TNF-α stimulation of RA-FLS significantly increased the ratios of p-JAK2/JAK2 and p-STAT3/STAT3, which were obviously lowered by TPL treatment (P < 0.01). TPL-treated RA-FLS overexpressing circRNA 0003353 showed significantly increased cell viability and migration ability with decreased IL-4 expression and increased IL-6 and IL-17 expressions and ratios of p-JAK2/ JAK2 and p-STAT3/STAT3 (P < 0.01).
CONCLUSION
The expression of circRNA 0003353 is increased in PBMCs in RA patients and in RA-FLS. TPL treatment can regulate JAK2/STAT3 signal pathway and inhibit the inflammatory response and migration of RA-FLS through circRNA 0003353.
Arthritis, Rheumatoid/pathology*
;
Cells, Cultured
;
Diterpenes/pharmacology*
;
Epoxy Compounds/pharmacology*
;
Fibroblasts/pathology*
;
Humans
;
Interleukin-17/metabolism*
;
Interleukin-4/metabolism*
;
Interleukin-6/metabolism*
;
Janus Kinase 2/metabolism*
;
Leukocytes, Mononuclear/metabolism*
;
Phenanthrenes/pharmacology*
;
RNA, Circular/metabolism*
;
STAT3 Transcription Factor/metabolism*
;
Signal Transduction/drug effects*
;
Synovial Membrane/pathology*
2.Salidroside Reduces PDE2A Expression by Down-regulating p53 in Human Embryonic Lung Fibroblasts.
Wen Min XING ; Sha Sha CHEN ; San Ying WANG ; Wen Yan GAO ; Xiao Qing WAN ; Hui Li SU ; Yi YANG ; Jing ZHANG ; Jing YAN ; Gen Xiang MAO
Biomedical and Environmental Sciences 2019;32(2):140-143
Cells, Cultured
;
Cyclic Nucleotide Phosphodiesterases, Type 2
;
antagonists & inhibitors
;
metabolism
;
Fibroblasts
;
drug effects
;
metabolism
;
Glucosides
;
pharmacology
;
Humans
;
Lung
;
cytology
;
embryology
;
Phenols
;
pharmacology
;
Phosphodiesterase Inhibitors
;
pharmacology
;
Tumor Suppressor Protein p53
;
metabolism
3.Effects of Jinwu Jiangu recipe on IL-17/STAT3 signals in rheumatoid arthritis synoviocytes.
Wu-Kai MA ; Rong LI ; Qiao-Yi NING ; Ying HUANG ; Fang TANG ; Dao-Min LU ; Xue-Ming YAO
China Journal of Chinese Materia Medica 2018;43(3):585-590
This paper aimed to investigate the effects of Jinwu Jiangu recipe total extract on the IL-17/STAT3 signals in rheumatoid arthritis synovial fibroblasts(RASF). The primary RASFs were cultured by tissue piece method , and divided into blank control group, Jinwu Jiangu recipe low dose group, Jinwu Jiangu recipe middle dose group, Jinwu Jiangu recipe high dose group, and tripterygium glycosides control group. They were then treated with corresponding serum free medium, different doses of Jinwu Jiangu recipe total extract(0.06, 0.6, 6.0 g·L⁻¹), and tripterygium glycosides(0.03 g·L⁻¹) respectively for 24 hours. The gene expression levels of RORα, RORγt, and STAT3 mRNA were detected by polymerase chain reaction(PCR), and the protein activity of IL-17R and pSTAT3 were measured by Western blot assay. The results showed that as compared with blank control group, the expression levels of RORα, RORγt, IL-17R and STAT3 mRNA in RASF were significantly declined(<0.01). As compared with tripterygium glycosides control group, Jinwu Jiangu recipe total extract middle dose group and high dose group can down-regulate the expression levels of RORα, RORγt, IL-17R and STAT3 mRNA(<0.05), and the effect was more obvious in high dose group(<0.01). As compared with blank control group, the protein expression levels of IL-17R and pSTAT3 in each treatment group were obviously decreased(<0.01). As compared with tripterygium glycosides control group, Jinwu Jiangu recipe high dose group had more obvious effect in down-regulating the protein expression of pSTAT3(<0.01). Therefore, Miao medicine Jinwu Jiangu recipe total extract can down-regulate the expressions of RORα, RORγt, and STAT3 mRNA, and inhibit the protein activity of IL-17R and pSTAT3 in RASF.
Arthritis, Rheumatoid
;
Cells, Cultured
;
Drugs, Chinese Herbal
;
pharmacology
;
Fibroblasts
;
Gene Expression Regulation
;
Humans
;
Nuclear Receptor Subfamily 1, Group F, Member 1
;
metabolism
;
Nuclear Receptor Subfamily 1, Group F, Member 3
;
metabolism
;
Receptors, Interleukin-17
;
metabolism
;
STAT3 Transcription Factor
;
metabolism
;
Synovial Membrane
;
Synoviocytes
;
drug effects
4.Osthole decreases collagen I/III contents and their ratio in TGF-β1-overexpressed mouse cardiac fibroblasts through regulating the TGF-β/Smad signaling pathway.
Jin-Cheng LIU ; Lei ZHOU ; Feng WANG ; Zong-Qi CHENG ; Chen RONG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(5):321-329
The present study was designed to elucidate whether the mechanism by which osthole decreases collagenI/III contents and their ratio is regulating the TGF-β/Smad signaling pathway in TGF-β1-overexpressed mouse cardiac fibroblasts (CFs). These CFs were cultured and treated with different concentrations of osthole. Our results showed that the TGF-β1 expression in the CFs transfected with that the recombinant expression plasmids pcDNA3.1(+)-TGF-β1 was significantly enhanced. After the CFs were treated with 1.25-5 μg·mL of osthole for 24 h, the mRNA and protein expression levels of collagensIand III were reduced. The collagen I/III ratio was also reduced. The mRNA and protein expression levels of TGF-β1, TβRI, Smad2/3, P-Smad2/3, Smad4, and α-SMA were decreased, whereas the expression level of Smad7 was increased. These effects suggested that osthole could inhibit collagen I and III expression and reduce their ratio via the TGF-β/Smad signaling pathway in TGF-β1 overexpressed CFs. These effects of osthole may play beneficial roles in the prevention and treatment of myocardial fibrosis.
Actins
;
genetics
;
Animals
;
Cells, Cultured
;
Collagen
;
biosynthesis
;
genetics
;
Coumarins
;
pharmacology
;
Fibroblasts
;
drug effects
;
metabolism
;
Gene Expression Regulation
;
drug effects
;
Mice
;
Myocardium
;
cytology
;
Protein-Serine-Threonine Kinases
;
genetics
;
RNA, Messenger
;
genetics
;
Real-Time Polymerase Chain Reaction
;
Receptor, Transforming Growth Factor-beta Type I
;
Receptors, Transforming Growth Factor beta
;
genetics
;
Signal Transduction
;
drug effects
;
Smad Proteins
;
genetics
;
Transforming Growth Factor beta1
;
genetics
5.Puerarin attenuates angiotensin II-induced cardiac fibroblast proliferation via the promotion of catalase activity and the inhibition of hydrogen peroxide-dependent Rac-1 activation.
Gang CHEN ; Shi-Fen PAN ; Xiang-Li CUI ; Li-Hong LIU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(1):41-52
The aims of the present study were to evaluate the effects of puerarin on angiotensin II-induced cardiac fibroblast proliferation and to explore the molecular mechanisms of action. Considering the role of HO in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation, we hypothesized that modulating catalase activity would be a potential target in regulating the redox-sensitive pathways. Our results showed that the activation of Rac1 was dependent on the levels of intracellular HO. Puerarin blocked the phosphorylation of extracellular regulated protein kinases (ERK)1/2, abolished activator protein (AP)-1 binding activity, and eventually attenuated cardiac fibroblast proliferation through the inhibition of HO-dependent Rac1 activation. Further studies revealed that angiotensin II treatment resulted in decreased catalase protein expression and enzyme activity, which was disrupted by puerarin via the upregulation of catalase protein expression at the transcriptional level and the prolonged protein degradation. These findings indicated that the anti-proliferation mechanism of puerarin was mainly through blocking angiontensin II-triggered downregulation of catalase expression and HO-dependent Rac1 activation.
Angiotensin II
;
pharmacology
;
Angiotensin II Type 1 Receptor Blockers
;
pharmacology
;
Animals
;
Animals, Newborn
;
Catalase
;
genetics
;
metabolism
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Extracellular Signal-Regulated MAP Kinases
;
antagonists & inhibitors
;
metabolism
;
Fibroblasts
;
Gene Expression Regulation
;
drug effects
;
Heart
;
drug effects
;
Hydrogen Peroxide
;
metabolism
;
pharmacology
;
Isoflavones
;
pharmacology
;
Mice
;
Myocardium
;
cytology
;
enzymology
;
metabolism
;
NADPH Oxidases
;
antagonists & inhibitors
;
metabolism
;
Neuropeptides
;
metabolism
;
Signal Transduction
;
drug effects
;
Transcription Factor AP-1
;
antagonists & inhibitors
;
metabolism
;
Transcriptional Activation
;
drug effects
;
rac1 GTP-Binding Protein
;
metabolism
6.A standardized extract of Asparagus officinalis stem prevents reduction in heat shock protein 70 expression in ultraviolet-B-irradiated normal human dermal fibroblasts: an in vitro study.
Ken SHIRATO ; Jun TAKANARI ; Tomoko KODA ; Takuya SAKURAI ; Junetsu OGASAWARA ; Hideki OHNO ; Takako KIZAKI
Environmental Health and Preventive Medicine 2018;23(1):40-40
BACKGROUND:
Heat shock protein 70 (HSP70) exhibits protective effects against ultraviolet (UV)-induced premature skin aging. A standardized extract of Asparagus officinalis stem (EAS) is produced as a novel and unique functional food that induces HSP70 cellular expression. To elucidate the anti-photoaging potencies of EAS, we examined its effects on HSP70 expression levels in UV-B-irradiated normal human dermal fibroblasts (NHDFs).
METHODS:
NHDFs were treated with 1 mg/mL of EAS or dextrin (vehicle control) prior to UV-B irradiation (20 mJ/cm). After culturing NHDFs for different time periods, HSP70 mRNA and protein levels were analyzed using real-time polymerase chain reaction and western blotting, respectively.
RESULTS:
UV-B-irradiated NHDFs showed reduced HSP70 mRNA levels after 1-6 h of culture, which were recovered after 24 h of culture. Treatment with EAS alone for 24 h increased HSP70 mRNA levels in the NHDFs, but the increase was not reflected in its protein levels. On the other hand, pretreatment with EAS abolished the UV-B irradiation-induced reduction in HSP70 expression at both mRNA and protein levels. These results suggest that EAS is capable to preserve HSP70 quantity in UV-B-irradiated NHDFs.
CONCLUSIONS
EAS exhibits anti-photoaging potencies by preventing the reduction in HSP70 expression in UV-irradiated dermal fibroblasts.
Asparagus Plant
;
Cells, Cultured
;
Female
;
Fibroblasts
;
drug effects
;
radiation effects
;
HSP70 Heat-Shock Proteins
;
biosynthesis
;
Humans
;
Middle Aged
;
Plant Extracts
;
pharmacology
;
Polymerase Chain Reaction
;
Skin
;
drug effects
;
radiation effects
;
Skin Aging
;
drug effects
;
radiation effects
;
Telomere
;
metabolism
;
Ultraviolet Rays
;
adverse effects
7.Adipogenic and Lipolytic Effects of Ascorbic Acid in Ovariectomized Rats
Byoungjae KIM ; Kyung Min CHOI ; Hong Soon YIM ; Hyun Tae PARK ; Joung Han YIM ; Min Goo LEE
Yonsei Medical Journal 2018;59(1):85-91
PURPOSE: Ascorbic acid has been reported to have an adipogenic effect on 3T3-L1 preadipocytes, while evidence also suggests that ascorbic acid reduces body weight in humans. In this study, we tested the effects of ascorbic acid on adipogenesis and the balance of lipid accumulation in ovariectomized rats, in addition to long-term culture of differentiated 3T3-L1 adipocytes. MATERIALS AND METHODS: Murine 3T3-L1 fibroblasts and ovariectomized rats were treated with ascorbic acid at various time points. In vitro adipogenesis was analyzed by Oil Red O staining, and in vivo body fat was measured by a body composition analyzer using nuclear magnetic resonance. RESULTS: When ascorbic acid was applied during an early time point in 3T3-L1 preadipocyte differentiation and after bilateral ovariectomy (OVX) in rats, adipogenesis and fat mass gain significantly increased, respectively. However, lipid accumulation in well-differentiated 3T3-L1 adipocytes showed a significant reduction when ascorbic acid was applied after differentiation (10 days after induction). Also, oral ascorbic acid administration 4 weeks after OVX in rats significantly reduced both body weight and subcutaneous fat layer. In comparison to the results of ascorbic acid, which is a well-known cofactor for an enzyme of collagen synthesis, and the antioxidant ramalin, a potent antioxidant but not a cofactor, showed only a lipolytic effect in well-differentiated 3T3-L1 adipocytes, not an adipogenic effect. CONCLUSION: Taking these results into account, we concluded that ascorbic acid has both an adipogenic effect as a cofactor of an enzymatic process and a lipolytic effect as an antioxidant.
3T3-L1 Cells
;
Adipocytes/drug effects
;
Adipocytes/metabolism
;
Adipogenesis/drug effects
;
Animals
;
Antioxidants/pharmacology
;
Ascorbic Acid/pharmacology
;
Body Composition/drug effects
;
Body Weight/drug effects
;
Cell Differentiation/drug effects
;
Female
;
Fibroblasts/drug effects
;
Fibroblasts/metabolism
;
Lipolysis/drug effects
;
Mice
;
Ovariectomy
;
Rats, Sprague-Dawley
8.Role of inhibiting LIM-kinase2 in improving erectile function through suppression of corporal fibrosis in a rat model of cavernous nerve injury.
Juhyun PARK ; Sung Yong CHO ; Kwanjin PARK ; Ji Sun CHAI ; Hwancheol SON ; Soo Woong KIM ; Jae-Seung PAICK ; Min Chul CHO
Asian Journal of Andrology 2018;20(4):372-378
We evaluated whether LIM-kinase 2 inhibitor (LIMK2i) could improve erectile function by suppressing corporal fibrosis through the normalization of the Rho-associated coiled-coil protein kinase 1 (ROCK1)/LIMK2/Cofilin pathway in a rat model of cavernous nerve crush injury (CNCI). Sixty 11-week-old male Sprague-Dawley rats were divided equally into five groups: sham surgery (S), CNCI (I), and CNCI treated with low-dose (L), medium-dose (M), and high-dose (H) LIMK2i. The L, M, and H groups were treated with a daily intraperitoneal injection of LIMK2i (2.5, 5.0, and 10.0 mg kg-1 body weight, respectively) for 1 week after surgery. The erectile response was assessed using electrostimulation at 1 week, postoperatively. Penile tissues were processed for Masson's trichrome staining, double immunofluorescence, and Western blot assay. Erectile responses in the H group improved compared with the I group, while the M group showed only partial improvement. A significantly decreased smooth muscle/collagen ratio and an increased content of fibroblasts positive for phospho-LIMK2 were noted in the I group. The M and H groups revealed significant improvements in histological alterations and the dysregulated LIMK2/Cofilin pathway, except for LIMK2 phosphorylation in the M group. The inhibition of LIMK2 did not affect the ROCK1 protein expression. The content of fibroblasts positive for phospho-LIMK2 in the H group returned to the level found in the S group, whereas it did not in the M group. However, the L group did not exhibit such improvements. Our data suggest that the inhibition of LIMK2, particularly with administration of 10.0 mg kg-1 body weight LIMK2i, can improve corporal fibrosis and erectile function by normalizing the LIMK2/Cofilin pathway.
Animals
;
Cofilin 1/metabolism*
;
Electric Stimulation
;
Erectile Dysfunction/etiology*
;
Fibroblasts/pathology*
;
Fibrosis/drug therapy*
;
Lim Kinases/antagonists & inhibitors*
;
Male
;
Penile Diseases/drug therapy*
;
Penis/innervation*
;
Peripheral Nerve Injuries/pathology*
;
Phosphorylation
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
rho-Associated Kinases/genetics*
9.Anti-senescence effect and molecular mechanism of the major royal jelly proteins on human embryonic lung fibroblast (HFL-I) cell line.
Chen-Min JIANG ; Xin LIU ; Chun-Xue LI ; Hao-Cheng QIAN ; Di CHEN ; Chao-Qiang LAI ; Li-Rong SHEN
Journal of Zhejiang University. Science. B 2018;19(12):960-972
Royal jelly (RJ) from honeybee has been widely used as a health promotion supplement. The major royal jelly proteins (MRJPs) have been identified as the functional component of RJ. However, the question of whether MRJPs have anti-senescence activity for human cells remains. Human embryonic lung fibroblast (HFL-I) cells were cultured in media containing no MRJPs (A), MRJPs at 0.1 mg/ml (B), 0.2 mg/ml (C), or 0.3 mg/ml (D), or bovine serum albumin (BSA) at 0.2 mg/ml (E). The mean population doubling levels of cells in media B, C, D, and E were increased by 12.4%, 31.2%, 24.0%, and 10.4%, respectively, compared with that in medium A. The cells in medium C also exhibited the highest relative proliferation activity, the lowest senescence, and the longest telomeres. Moreover, MRJPs up-regulated the expression of superoxide dismutase-1 (SOD1) and down-regulated the expression of mammalian target of rapamycin (MTOR), catenin beta like-1 (CTNNB1), and tumor protein p53 (TP53). Raman spectra analysis showed that there were two unique bands related to DNA synthesis materials, amide carbonyl group vibrations and aromatic hydrogens. These results suggest that MRJPs possess anti-senescence activity for the HFL-I cell line, and provide new knowledge illustrating the molecular mechanism of MRJPs as anti-senescence factors.
Animals
;
Bees
;
Cattle
;
Cell Line
;
Cell Proliferation
;
Cellular Senescence/drug effects*
;
Culture Media
;
Dose-Response Relationship, Drug
;
Fatty Acids/chemistry*
;
Fibroblasts/drug effects*
;
Humans
;
Insect Proteins/chemistry*
;
Lung/drug effects*
;
Serum Albumin/metabolism*
;
Spectrum Analysis, Raman
;
Superoxide Dismutase-1/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
beta Catenin/metabolism*
10.Induction of robust senescence-associated secretory phenotype in mouse NIH-3T3 cells by mitomycin C.
Wei-Xing HUANG ; Xiao-Xuan GUO ; Zhong-Zhi PENG ; Chun-Liang WENG ; Chun-Yan HUANG ; Ben-Yan SHI ; Jie YANG ; Xiao-Xin LIAO ; Xiao-Yi LI ; Hui-Ling ZHENG ; Xin-Guang LIU ; Xue-Rong SUN
Acta Physiologica Sinica 2017;69(1):33-40
Senescence-associated secretory phenotype (SASP) is often a concomitant result of cell senescence, embodied by the enhanced function of secretion. The SASP factors secreted by senescent cells include cytokines, proteases and chemokines, etc, which can exert great influence on local as well as systemic environment and participate in the process of cell senescence, immunoregulation, angiogenesis, cell proliferation and tumor invasion, etc. Relative to the abundance of SASP models in human cells, the in vitro SASP model derived from mouse cells is scarce at present. Therefore, the study aimed to establish a mouse SASP model to facilitate the research in the field. With this objective, we treated the INK4a-deficient mouse NIH-3T3 cells and the wildtype mouse embryonic fibroblasts (MEF) respectively with mitomycin C (MMC), an anticarcinoma drug which could induce DNA damage. The occurring of cell senescence was evaluated by cell morphology, β-gal staining, integration ratio of EdU and Western blot. Quantitative RT-PCR and ELISA were used to detect the expression and secretion of SASP factors, respectively. The results showed that, 8 days after the treatment of NIH-3T3 cells with MMC (1 μg/mL) for 12 h or 24 h, the cells became enlarged and the ratios of β-gal-positive (blue-stained) cells significantly increased, up to 77.4% and 90.4%, respectively. Meanwhile, the expression of P21 protein increased and the integration ratios of EdU significantly decreased (P < 0.01). Quantitative RT-PCR detection showed that the mRNA levels of several SASP genes, including IL-6, TNF-α, IL-1α and IL-1β increased evidently. ELISA detection further observed an enhanced secretion of IL-6 (P < 0.01). On the contrary, although wildtype MEF could also be induced into senescence by MMC treatment for 12 h or 24 h, embodied by the enlarged cell volume, increased ratios of β-gal-positive cells (up to 71.7% and 80.2%, respectively) and enhanced expression of P21 protein, the secretion of IL-6 displayed no significant change. Our study indicated that, although MMC could induce senescence in both mouse NIH-3T3 cells and wildtype MEF, only senescent NIH-3T3 cells displayed the canonical SASP phenomena. Current study suggested that senescent NIH-3T3 cells might be an appropriate in vitro SASP model of mouse cells.
Animals
;
Cell Proliferation
;
Cellular Senescence
;
drug effects
;
Cyclin-Dependent Kinase Inhibitor p21
;
genetics
;
metabolism
;
Cytokines
;
genetics
;
metabolism
;
DNA Damage
;
Fibroblasts
;
drug effects
;
Interleukin-6
;
secretion
;
Mice
;
Mitomycin
;
pharmacology
;
NIH 3T3 Cells
;
Phenotype

Result Analysis
Print
Save
E-mail