1.Regulatory effects of bio-intensity electric field on transformation of human skin fibroblasts.
Wen Ping WANG ; Ran JI ; Ze ZHANG ; Ya Ting WU ; Heng Shu ZHANG ; Qiong ZHANG ; Xu Pin JIANG ; Miao TENG
Chinese Journal of Burns 2022;38(4):354-362
Objective: To investigate the regulatory effects of bio-intensity electric field on the transformation of human skin fibroblasts (HSFs). Methods: The experimental research methods were used. HSFs were collected and divided into 200 mV/mm electric field group treated with 200 mV/mm electric field for 6 h and simulated electric field group placed in the electric field device without electricity for 6 h. Changes in morphology and arrangement of cells were observed in the living cell workstation; the number of cells at 0 and 6 h of treatment was recorded, and the rate of change in cell number was calculated; the direction of cell movement, movement velocity, and trajectory velocity within 3 h were observed and calculated (the number of samples was 34 in the simulated electric field group and 30 in 200 mV/mm electric field group in the aforementioned experiments); the protein expression of α-smooth muscle actin (α-SMA) in cells after 3 h of treatment was detected by immunofluorescence method (the number of sample was 3). HSFs were collected and divided into simulated electric field group placed in the electric field device without electricity for 3 h, and 100 mV/mm electric field group, 200 mV/mm electric field group, and 400 mV/mm electric field group which were treated with electric fields of corresponding intensities for 3 h. Besides, HSFs were divided into simulated electric field group placed in the electric field device without electricity for 6 h, and electric field treatment 1 h group, electric field treatment 3 h group, and electric field treatment 6 h group treated with 200 mV/mm electric field for corresponding time. The protein expressions of α-SMA and proliferating cell nuclear antigen (PCNA) were detected by Western blotting (the number of sample was 3). Data were statistically analyzed with Mann-Whitney U test, one-way analysis of variance, independent sample t test, and least significant difference test. Results: After 6 h of treatment, compared with that in simulated electric field group, the cells in 200 mV/mm electric field group were elongated in shape and locally adhered; the cells in simulated electric field group were randomly arranged, while the cells in 200 mV/mm electric field group were arranged in a regular longitudinal direction; the change rates in the number of cells in the two groups were similar (P>0.05). Within 3 h of treatment, the cells in 200 mV/mm electric field group had an obvious tendency to move toward the positive electrode, and the cells in simulated electric field group moved around the origin; compared with those in simulated electric field group, the movement velocity and trajectory velocity of the cells in 200 mV/mm electric field group were increased significantly (with Z values of -5.33 and -5.41, respectively, P<0.01), and the directionality was significantly enhanced (Z=-4.39, P<0.01). After 3 h of treatment, the protein expression of α-SMA of cells in 200 mV/mm electric field group was significantly higher than that in simulated electric field group (t=-9.81, P<0.01). After 3 h of treatment, the protein expressions of α-SMA of cells in 100 mV/mm electric field group, 200 mV/mm electric field group, and 400 mV/mm electric field group were 1.195±0.057, 1.606±0.041, and 1.616±0.039, respectively, which were significantly more than 0.649±0.028 in simulated electric field group (P<0.01). Compared with that in 100 mV/mm electric field group, the protein expressions of α-SMA of cells in 200 mV/mm electric field group and 400 mV/mm electric field group were significantly increased (P<0.01). The protein expressions of α-SMA of cells in electric field treatment 1 h group, electric field treatment 3 h group, and electric field treatment 6 h group were 0.730±0.032, 1.561±0.031, and 1.553±0.045, respectively, significantly more than 0.464±0.020 in simulated electric field group (P<0.01). Compared with that in electric field treatment 1 h group, the protein expressions of α-SMA in electric field treatment 3 h group and electric field treatment 6 h group were significantly increased (P<0.01). After 3 h of treatment, compared with that in simulated electric field group, the protein expressions of PCNA of cells in 100 mV/mm electric field group, 200 mV/mm electric field group, and 400 mV/mm electric field group were significantly decreased (P<0.05 or P<0.01); compared with that in 100 mV/mm electric field group, the protein expressions of PCNA of cells in 200 mV/mm electric field group and 400 mV/mm electric field group were significantly decreased (P<0.05 or P<0.01); compared with that in 200 mV/mm electric field group, the protein expression of PCNA of cells in 400 mV/mm electric field group was significantly decreased (P<0.01). Compared with that in simulated electric field group, the protein expressions of PCNA of cells in electric field treatment 1 h group, electric field treatment 3 h group, and electric field treatment 6 h group were significantly decreased (P<0.01); compared with that in electric field treatment 1 h group, the protein expressions of PCNA of cells in electric field treatment 3 h group and electric field treatment 6 h group were significantly decreased (P<0.05 or P<0.01); compared with that in electric field treatment 3 h group, the protein expression of PCNA of cells in electric field treatment 6 h group was significantly decreased (P<0.01). Conclusions: The bio-intensity electric field can induce the migration of HSFs and promote the transformation of fibroblasts to myofibroblasts, and the transformation displays certain dependence on the time and intensity of electric field.
Actins/biosynthesis*
;
Cell Differentiation/physiology*
;
Cell Movement/physiology*
;
Electric Stimulation Therapy
;
Electricity
;
Fibroblasts/physiology*
;
Humans
;
Myofibroblasts/physiology*
;
Proliferating Cell Nuclear Antigen/biosynthesis*
;
Skin/cytology*
2.Periostin inhibits hypoxia-induced oxidative stress and apoptosis in human periodontal ligament fibroblasts p38 MAPK signaling pathway.
Huili LIU ; Yidan WANG ; Yangli YUE ; Peng ZHANG ; Yali SUN ; Qiaohua CHEN
Journal of Zhejiang University. Medical sciences 2020;40(7):942-948
OBJECTIVE:
To investigate the effect of periostin on hypoxia-induced oxidative stress and apoptosis in human periodontal ligament fibroblasts and the molecular mechanism involved.
METHODS:
cultured human periodontal ligament fibroblasts were placed in an anaerobic gas-producing bag for hypoxia treatment for 48 h followed by treatment with periostin at low (25 ng/mL), moderate (50 ng/mL) or high (100 ng/mL) doses. MTT assay was used to measure the cell viability, and the cell apoptosis rate was determined using flow cytometry. The contents of IL-1β, IL-6 and TNF-α in the cells were determined with ELISA, and ROS levels were measured using a fluorescent plate reader. The intracellular SOD activity was detected using ELISA. The expressions of HIF-1α, P21, cyclin D1, Bax, cleaved caspase-3, Bcl-2, P38MAPK and p-p38 MAPK proteins in the cells were detected with Western blotting.
RESULTS:
Hypoxia treatment significantly reduced the cell viability ( < 0.05), increased P21, Bax, and cleaved caspase-3 protein levels ( < 0.05), promoted cell apoptosis ( < 0.05), and decreased cyclin D1 and Bcl-2 protein levels ( < 0.05) in the cells. Compared with the hypoxic group, the cells treated with periostin at different concentrations showed significantly increased cell viability ( < 0.05) with significantly lowered apoptotic rates ( < 0.05) and decreased expression levels of Bax and cleaved caspase-3 ( < 0.05) but significantly increased expression levels of cyclin D1 and Bcl-2 ( < 0.05). Hypoxic exposure of the cells resulted in significantly increased expression levels of HIF-1α and p-p38 MAPK ( < 0.05) and increased levels of IL-1β, IL-6, TNF-α and ROS ( < 0.05) but decreased SOD activity ( < 0.05). Periostin treatment at different concentrations significantly lowered the expression levels of HIF-1α and p-p38 MAPK ( < 0.05) and the levels of IL-1β, IL-6, TNF-α and ROS ( < 0.05) and significantly increased SOD activity in the hypoxic cells ( < 0.05).
CONCLUSIONS
Periostin promotes the proliferation, inhibits apoptosis, enhances cellular antioxidant capacity, and reduces inflammatory damage in human periodontal ligament fibroblasts exposed to hypoxia possibly by inhibiting the activation of the p38 MAPK signaling pathway.
Apoptosis
;
drug effects
;
Cell Adhesion Molecules
;
administration & dosage
;
Cell Hypoxia
;
Fibroblasts
;
drug effects
;
Humans
;
Oxidative Stress
;
drug effects
;
Periodontal Ligament
;
cytology
;
Signal Transduction
;
drug effects
;
p38 Mitogen-Activated Protein Kinases
3.Salidroside Reduces PDE2A Expression by Down-regulating p53 in Human Embryonic Lung Fibroblasts.
Wen Min XING ; Sha Sha CHEN ; San Ying WANG ; Wen Yan GAO ; Xiao Qing WAN ; Hui Li SU ; Yi YANG ; Jing ZHANG ; Jing YAN ; Gen Xiang MAO
Biomedical and Environmental Sciences 2019;32(2):140-143
Cells, Cultured
;
Cyclic Nucleotide Phosphodiesterases, Type 2
;
antagonists & inhibitors
;
metabolism
;
Fibroblasts
;
drug effects
;
metabolism
;
Glucosides
;
pharmacology
;
Humans
;
Lung
;
cytology
;
embryology
;
Phenols
;
pharmacology
;
Phosphodiesterase Inhibitors
;
pharmacology
;
Tumor Suppressor Protein p53
;
metabolism
4.Effect of cell penetrating peptide TAT-modified liposomes loaded with salvianolic acid B on proliferation,migration and cell cycle of human skin fibroblasts.
Jun SHI ; Yan-Ting WU ; Si-Yi GUO ; Gui-Tian CHEN ; Jian-Hui LAI ; Xiao-Qi XU
China Journal of Chinese Materia Medica 2019;44(2):357-363
Hypertrophic scar( HS) is a very common skin fibrosis disorder after human skin injury and wound healing. The objective of this study was to investigate the efficacy of cell penetrating peptide TAT-modified liposomes loaded with salvianolic acid B( SAB-TAT-LIP) on proliferation,migration and cell cycle of human skin fibroblasts( HSF),and preliminarily evaluate its effect on prevention and treatment of HS. HSF were cultured in vitro,and MTT assay was used to detect the inhibitory effect of SAB-TAT-LIP on cell proliferation. Cell migration was assessed by Transwell chamber method and scratch method; and cell cycle change was detected by flow cytometry. In vitro cell studies showed that blank liposome basically had no toxic effect on HSF. Different concentrations of SABTAT-LIP inhibited proliferation on HSF in varying degrees after intervention for different periods in a dose and time dependent manner;meanwhile,SAB-TAT-LIP significantly inhibited the migration and invasion of HSF. At the same time,SAB-TAT-LIP could block the cell cycle at G0/G1 phase after intervention for 48 h,P<0.01 as compared with the blank control group. Conclusively,our experimental data quantitatively demonstrate that SAB-TAT-LIP has significant inhibitory effect on cells proliferation,invasion and migration,with blocking effect on G0/G1 phase. This may offer a promising therapeutic strategy for transdermal delivery in prevention and treatment of HS.
Benzofurans
;
pharmacology
;
Cell Cycle
;
Cell Movement
;
Cell Proliferation
;
Cell-Penetrating Peptides
;
Cells, Cultured
;
Drug Carriers
;
Fibroblasts
;
cytology
;
drug effects
;
Humans
;
Liposomes
;
Skin
;
cytology
5.High Expression of Multidrug Resistance Gene-1 Can Aggravate Resistance to Methotrexate in Rheumatoid Arthritis Patients.
Jia WANG ; Ni MAO ; Xi XIE ; Shu LI ; Wei Jin CHEN
Acta Academiae Medicinae Sinicae 2019;41(5):595-600
Objective To explore the role of multidrug resistance gene-1(MDR1)gene in methotrexate(MTX)resistance in patients with rheumatoid arthritis(RA).Methods Fibroblast-like synoviocytes(FLS)from RA patients were infected with recombinant adenovirus Ad-EGFP-MDR1 to obtain MDR1 over-expressed RA FLS.The transcription level of MDR1 gene and the expression level of its coding product P-glycoprotein(P-gp) rotein were detected by real-time PCR and Western blot analysis.The efflux function was verified by rhodamine 123 efflux assay.The resistance to MTX was detected by MTT assay.Results RA FLS were infected with recombinant adenovirus Ad-EGFP-MDR1;72 hours later,the particles size in MDR1 over-expressed RA FLS increased,the cell volume became larger,and the growth rate decreased.The transcription level of MDR1(1.4325±0.3924 0.0650±0.0070;=6.035,=0.004),the expression level of P-gp protein(1.8667±0.2857 0.9367±0.0551;=5.536,=0.005),and the ability of extracellular rhodamine 123(979.43±196.81 1680.06±147.04;=-4.940,=0.008) in MDR1 over-expressed RA FLS were significantly higher than those of negative virus control RA-FLS,and the survival rate of MDR1 over-expressed RA FLS was significantly increased at each concentration of MTX(<0.05).Conclusion The high expression of MDR1 can affect the efflux ability to MTX by up-regulating the expression of P-gp,thus enhancing the drug resistance to MTX in RA FLS.
ATP Binding Cassette Transporter, Subfamily B
;
genetics
;
Arthritis, Rheumatoid
;
drug therapy
;
genetics
;
Cells, Cultured
;
Drug Resistance
;
Fibroblasts
;
drug effects
;
Humans
;
Methotrexate
;
pharmacology
;
Synovial Membrane
;
cytology
6.Effect of microRNA-133b on Myocardial Fibrosis.
Song Lin ZHANG ; Fen Ling FAN ; Feng WEI ; Jun WANG ; Yu Shun ZHANG
Acta Academiae Medicinae Sinicae 2019;41(5):589-594
Objective To investigate the effect of microRNA-133b(miR-133b)on cardiac fibrosis and its mechanism.Methods Human cardiac fibroblasts(CFs)were harvested.The proliferation of CFs was detected by CCK8 during the overexpression and knock-down of miR-133b.The expressions of connective tissue growth factor(CTGF),α-smooth muscle actin(α-SMA),collagen Ⅰ,and collagen Ⅲ were detected with qRT-PCR and Western blot analysis after miR-133b overexpression or downexpression.Target genes of miR-133b were predicted by bioinformatics software.Dual-luciferase activity assay were used to verify a target gene of miR-133b.Results qRT-PCR showed that the expression level of miR-133b in the miR-133b mimic group was significantly higher than that in the negative control group(=26.219,=0.000).The expression level of miR-133b in the miR-133b inhibitor group was significantly lower than that in the negative control group(=6.738,=0.003).After 21,45,69,93,and 117 hours of transfection,the proliferation ability of CFs significantly decreased in the miR-133b mimic group but significantly increased in the miR-133b group(all <0.05,compared with the negative control group).After overexpression of miR-133b,the mRNA and protein levels of CTGF(=9.213,=0.001;=8.195,=0.001),α-SMA(=6.511, =0.003;=4.434,=0.011),collagenⅠ(=3.172,=0.034;=4.053,=0.015)and collagen Ⅲ(=6.404,=0.003;=5.319,=0.006)were significantly down-regulated.After the expression of miR-133b was knocked down,the mRNA and protein levels of CTGF(=9.439,=0.001;=14.100,=0.000),α-SMA(=4.519,=0.011;=4.377,=0.012),collagen Ⅰ(=5.966,=0.004;=5.514,=0.005)and collagen Ⅲ(=4.622,=0.010;=4.996,=0.008)were significantly increased.The relative luciferase activity of the cells co-transfected with miR-133b mimic and WT 3'UTR expression vector was significantly lower than that of the cells co-transfected with mimic control and WT 3'UTR expression vectors(=5.654,=0.005);however,there was no significant difference in relative luciferase activity between cells co-transfected with miR-133b mimic and MUT 3'UTR expression vectors and cells co-transfected with mimic control and MUT 3'UTR expression vectors(=0.380,=0.724).Conclusion miR-133b may affect the activation and proliferation of CFs by targeting CTGF and thus improve cardiac fibrosis.
Actins
;
metabolism
;
Cell Proliferation
;
Cells, Cultured
;
Collagen
;
metabolism
;
Connective Tissue Growth Factor
;
metabolism
;
Fibroblasts
;
cytology
;
Fibrosis
;
Humans
;
MicroRNAs
;
genetics
;
Myocardium
;
pathology
7.Effects of Different Inflammatory Factors on Hepatocyte Kinase Receptors and Ligands in Human Periodontal Ligament Fibroblasts.
Xiao Nan XU ; Meng Lin WANG ; Ding ZHANG
Acta Academiae Medicinae Sinicae 2019;41(3):300-306
Objective To investigate the effects of different inflammatory factors on hepatocyte kinase receptor(Eph)and ligand(ephrin)in human periodontal ligament fibroblasts(hPDLFs).Methods hPDLFs were stimulated with either 10 ng/ml tumor necrosis factor-α(TNF-α)or 10 ng/ml interleukin(IL)-1β,and then the expressions of Eph and ephrin at both mRNA and protein levels were determined at 0,1,2,6,12,and 24 hours.Results The levels of Eph receptors and ephrin ligand changed in a time-dependent manner in human periodontal ligament fibroblasts after treatment with TNF-α or IL-1β. The expression of ephrinA2 significantly increased in both groups within 24 hours(all <0.05). In the TNF-α group,the mRNA expression of ephrinA2 significantly increased at 1 h and was significant higher that in the IL-1β group at 24 h(<0.05). EphB4 showed a time-dependent decline after a short period of high expression.Conclusions Both TNF-α and IL-1β can cause changes in the expressions of Eph receptors and ephrin ligands in hPDLFs. The changes induced by both are consistent,although the effect of TNF-α is more pronounced.
Cells, Cultured
;
Ephrins
;
metabolism
;
Fibroblasts
;
Humans
;
Interleukin-1beta
;
pharmacology
;
Ligands
;
Periodontal Ligament
;
cytology
;
Receptors, Eph Family
;
metabolism
;
Tumor Necrosis Factor-alpha
;
pharmacology
8.Effects of Adipose-derived Mesenchymal Stem Cell Exosomes on Corneal Stromal Fibroblast Viability and Extracellular Matrix Synthesis.
Ting SHEN ; ; Qing-Qing ZHENG ; Jiang SHEN ; Qiu-Shi LI ; Xing-Hui SONG ; Hong-Bo LUO ; Chao-Yang HONG ; ; Ke YAO
Chinese Medical Journal 2018;131(6):704-712
BackgroundCorneal stromal cells (CSCs) are components of the corneal endothelial microenvironment that can be induced to form a functional tissue-engineered corneal endothelium. Adipose-derived mesenchymal stem cells (ADSCs) have been reported as an important component of regenerative medicine and cell therapy for corneal stromal damage. We have demonstrated that the treatment with ADSCs leads to phenotypic changes in CSCs in vitro. However, the underlying mechanisms of such ADSC-induced changes in CSCs remain unclear.
MethodsADSCs and CSCs were isolated from New Zealand white rabbits and cultured in vitro. An Exosome Isolation Kit, Western blotting, and nanoparticle tracking analysis (NTA) were used to isolate and confirm the exosomes from ADSC culture medium. Meanwhile, the optimal exosome concentration and treatment time were selected. Cell Counting Kit-8 and annexin V-fluorescein isothiocyanate/propidium iodide assays were used to assess the effect of ADSC- derived exosomes on the proliferation and apoptosis of CSCs. To evaluate the effects of ADSC- derived exosomes on CSC invasion activity, Western blotting was used to detect the expression of matrix metalloproteinases (MMPs) and collagens.
Results:ADSCs and CSCs were successfully isolated from New Zealand rabbits. The optimal concentration and treatment time of exosomes for the following study were 100 μg/ml and 96 h, respectively. NTA revealed that the ADSC-derived exosomes appeared as nanoparticles (40-200 nm), and Western blotting confirmed positive expression of CD9, CD81, flotillin-1, and HSP70 versus ADSC cytoplasmic proteins (all P < 0.01). ADSC-derived exosomes (50 μg/ml and 100 μg/ml) significantly promoted proliferation and inhibited apoptosis (mainly early apoptosis) of CSCs versus non-exosome-treated CSCs (all P < 0.05). Interestingly, MMPs were downregulated and extracellular matrix (ECM)-related proteins including collagens and fibronectin were upregulated in the exosome-treated CSCs versus non-exosome-treated CSCs (MMP1: t = 80.103, P < 0.01; MMP2: t = 114.778, P < 0.01; MMP3: t = 56.208, P < 0.01; and MMP9: t = 60.617, P < 0.01; collagen I: t = -82.742, P < 0.01; collagen II: t = -72.818, P < 0.01; collagen III: t = -104.452, P < 0.01; collagen IV: t = -133.426, P < 0.01, and collagen V: t = -294.019, P < 0.01; and fibronectin: t = -92.491, P < 0.01, respectively).
Conclusion:The findings indicate that ADSCs might play an important role in CSC viability regulation and ECM remodeling, partially through the secretion of exosomes.
Adipose Tissue ; cytology ; Animals ; Cell Proliferation ; physiology ; Cell Survival ; physiology ; Cells, Cultured ; Exosomes ; metabolism ; Extracellular Matrix ; metabolism ; Fibroblasts ; cytology ; metabolism ; Matrix Metalloproteinases ; metabolism ; Mesenchymal Stromal Cells ; cytology ; metabolism ; Rabbits
9.Osthole decreases collagen I/III contents and their ratio in TGF-β1-overexpressed mouse cardiac fibroblasts through regulating the TGF-β/Smad signaling pathway.
Jin-Cheng LIU ; Lei ZHOU ; Feng WANG ; Zong-Qi CHENG ; Chen RONG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(5):321-329
The present study was designed to elucidate whether the mechanism by which osthole decreases collagenI/III contents and their ratio is regulating the TGF-β/Smad signaling pathway in TGF-β1-overexpressed mouse cardiac fibroblasts (CFs). These CFs were cultured and treated with different concentrations of osthole. Our results showed that the TGF-β1 expression in the CFs transfected with that the recombinant expression plasmids pcDNA3.1(+)-TGF-β1 was significantly enhanced. After the CFs were treated with 1.25-5 μg·mL of osthole for 24 h, the mRNA and protein expression levels of collagensIand III were reduced. The collagen I/III ratio was also reduced. The mRNA and protein expression levels of TGF-β1, TβRI, Smad2/3, P-Smad2/3, Smad4, and α-SMA were decreased, whereas the expression level of Smad7 was increased. These effects suggested that osthole could inhibit collagen I and III expression and reduce their ratio via the TGF-β/Smad signaling pathway in TGF-β1 overexpressed CFs. These effects of osthole may play beneficial roles in the prevention and treatment of myocardial fibrosis.
Actins
;
genetics
;
Animals
;
Cells, Cultured
;
Collagen
;
biosynthesis
;
genetics
;
Coumarins
;
pharmacology
;
Fibroblasts
;
drug effects
;
metabolism
;
Gene Expression Regulation
;
drug effects
;
Mice
;
Myocardium
;
cytology
;
Protein-Serine-Threonine Kinases
;
genetics
;
RNA, Messenger
;
genetics
;
Real-Time Polymerase Chain Reaction
;
Receptor, Transforming Growth Factor-beta Type I
;
Receptors, Transforming Growth Factor beta
;
genetics
;
Signal Transduction
;
drug effects
;
Smad Proteins
;
genetics
;
Transforming Growth Factor beta1
;
genetics
10.Puerarin attenuates angiotensin II-induced cardiac fibroblast proliferation via the promotion of catalase activity and the inhibition of hydrogen peroxide-dependent Rac-1 activation.
Gang CHEN ; Shi-Fen PAN ; Xiang-Li CUI ; Li-Hong LIU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(1):41-52
The aims of the present study were to evaluate the effects of puerarin on angiotensin II-induced cardiac fibroblast proliferation and to explore the molecular mechanisms of action. Considering the role of HO in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation, we hypothesized that modulating catalase activity would be a potential target in regulating the redox-sensitive pathways. Our results showed that the activation of Rac1 was dependent on the levels of intracellular HO. Puerarin blocked the phosphorylation of extracellular regulated protein kinases (ERK)1/2, abolished activator protein (AP)-1 binding activity, and eventually attenuated cardiac fibroblast proliferation through the inhibition of HO-dependent Rac1 activation. Further studies revealed that angiotensin II treatment resulted in decreased catalase protein expression and enzyme activity, which was disrupted by puerarin via the upregulation of catalase protein expression at the transcriptional level and the prolonged protein degradation. These findings indicated that the anti-proliferation mechanism of puerarin was mainly through blocking angiontensin II-triggered downregulation of catalase expression and HO-dependent Rac1 activation.
Angiotensin II
;
pharmacology
;
Angiotensin II Type 1 Receptor Blockers
;
pharmacology
;
Animals
;
Animals, Newborn
;
Catalase
;
genetics
;
metabolism
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Extracellular Signal-Regulated MAP Kinases
;
antagonists & inhibitors
;
metabolism
;
Fibroblasts
;
Gene Expression Regulation
;
drug effects
;
Heart
;
drug effects
;
Hydrogen Peroxide
;
metabolism
;
pharmacology
;
Isoflavones
;
pharmacology
;
Mice
;
Myocardium
;
cytology
;
enzymology
;
metabolism
;
NADPH Oxidases
;
antagonists & inhibitors
;
metabolism
;
Neuropeptides
;
metabolism
;
Signal Transduction
;
drug effects
;
Transcription Factor AP-1
;
antagonists & inhibitors
;
metabolism
;
Transcriptional Activation
;
drug effects
;
rac1 GTP-Binding Protein
;
metabolism

Result Analysis
Print
Save
E-mail