1.Study on the relationship of thallium exposure and outcomes of births.
J QI ; C M LIANG ; S Q YAN ; Z J LI ; J LI ; K HUANG ; H Y XIANG ; Y R TAO ; J H HAO ; S L TONG ; F B TAO
Chinese Journal of Epidemiology 2018;39(8):1112-1116
Objective: To investigate the relationship of thallium exposure and outcomes of births. Methods: A total of 3 236 mothers who had visited in Ma'anshan Maternal and Child Health-Care Hospital between May 2013 and September 2014 were included in this study and their thallium concentrations measured from samples of maternal and umbilical cord blood by inductively coupled plasma mass spectrometry. The results were correlated and evaluated with birth outcomes of the infants, using the multiple linear regression method. Results: The median (P(25)-P(75)) of thallium levels in first trimester, second trimester and umbilical cord blood were 61.7 (50.8-77.0), 60.3 (50.8-75.2) and 38.5 (33.6-44.1) ng/L, respectively. After adjustment for potential confounders, the thallium levels showed an inversely significant association with birth head circumference (unstandardized β coefficient=-0.41, 95%CI: -0.76- -0.06) in the first trimester blood, and associated with reduced birth length (unstandardized β coefficient=-0.65, 95%CI: -1.25- -0.05) in umbilical cord blood. However, there appeared no significantly associations with birth weight, length and head circumference (P>0.05) in second trimester. On stratification by sex, in girls but not in boys, the thallium levels were adversely associated with birth head circumference (unstandardized β coefficient=-0.53, 95%CI: -1.05--0.01) in the first trimester and were associated with decreased birth weight (unstandardized β coefficient=-277.08, 95%CI: -485.13- -69.03) and length (unstandardized β coefficient=-1.39, 95%CI: -2.26- -0.53) in umbilical cord blood thallium. Conclusions: Thallium exposure appeared a gender difference in newborn birth outcomes. In the first trimester, it was negatively associated with the birth head circumference, in the umbilical cord blood, and reduced birth weight and length in girls.
Adult
;
Birth Weight
;
Environmental Pollutants/blood*
;
Female
;
Fetal Blood/metabolism*
;
Fetus/metabolism*
;
Humans
;
Infant, Newborn
;
Male
;
Maternal Exposure
;
Parturition
;
Pregnancy
;
Pregnancy Outcome/epidemiology*
;
Thallium/blood*
2.Effects of maternal folate deficiency on the methylation of insulin-like growth factor system in the offspring rats.
Meng-Meng WU ; Fan YANG ; Yi QU ; De-Zhi MU
Chinese Journal of Contemporary Pediatrics 2017;19(4):470-474
OBJECTIVETo study the effects of maternal folate deficiency on fetal growth and development and the methylation profiles of insulin-like growth factor system in the offspring rats.
METHODSTwenty-two Sprague-Dawley female rats were randomly assigned to two groups: a folate deficient group (n=12) and a control group (n=10). They were fed with folate deficient and normal diet respectively. Dams were mated after 2 weeks of feeding. Eight female rats from each group were pregnant. On the 20th day of gestation, the fetuses were delivered by caesarean section. Thirty-two fetal rats from each group were randomly selected and the body length and weight were measured. Eight fetal rats from each group were randomly selected and ELISA was used to measure the level of folate content, IGF-1 and IGFBP-3 in the fetal brain and liver. Three fetal rats from each group were randomly selected and methylated DNA immunoprecipitation sequencing (MeDIP-Seq) was used to detect the methylation level of insulin-like growth factor system in the fetal brain and liver. ELISA was used to measure the level of IGF-1 and IGFBP-3 in the maternal serum from both groups.
RESULTSThe mean fetal length and weight were lower in the folate deficient group than in the control group (P<0.05). The levels of IGF-1 and IGFBP-3 in the maternal serum, as well as folate content and IGFBP-3 in the fetal brain and liver were significantly lower in the folate deficient group than in the control group (P<0.05). The methylation levels of IGF-1R, IGF-2R, IGFBP-2, IGFBP-5, IGFBP-6 and IGFBP-7 in the fetal brain were higher in the folate deficient group than in the control group (P<0.05). The methylation levels of IGF-1R, IGF-2R, IGFBP-3 and IGFBP-5 in the fetal liver were higher in the folate deficient group than in the control group. The methylation of IGF-2 gene showed a significant reduction in the folate deficient group (P<0.05).
CONCLUSIONSMaternal folate deficiency may cause retardation of growth and development of the offspring, which is possibly associated with the changes of methylation profiles of insulin-like growth factors.
Animals ; Brain ; metabolism ; DNA Methylation ; Female ; Fetal Development ; Fetus ; metabolism ; Folic Acid Deficiency ; metabolism ; Insulin-Like Growth Factor Binding Protein 3 ; blood ; Insulin-Like Growth Factor I ; analysis ; Liver ; metabolism ; Rats ; Rats, Sprague-Dawley
3.Effect of corticosterone on lissencephaly 1 expression in developing cerebral cortical neurons of fetal rats cultured in vitro.
Sen-Lin LUO ; Tao BO ; Tong LIU ; Jia-Jia XIONG ; Jian LI
Chinese Journal of Contemporary Pediatrics 2017;19(9):1008-1013
OBJECTIVETo investigate the effect of corticosterone on the expression of the neuronal migration protein lissencephaly 1 (LIS1) in developing cerebral cortical neurons of fetal rats.
METHODSThe primary cultured cerebral cortical neurons of fetal Wistar rats were divided into control group, low-dose group, and high-dose group. The neurons were exposed to the medium containing different concentrations of corticosterone (0 μmol/L for the control group, 0.1 μmol/L for the low-dose group, and 1.0 μmol/L for the high-dose group). The neurons were collected at 1, 4, and 7 days after intervention. Western blot and immunocytochemical staining were used to observe the change in LIS1 expression in neurons.
RESULTSWestern blot showed that at 7 days after intervention, the low- and high-dose groups had significantly higher expression of LIS1 in the cytoplasm and nucleus of cerebral cortical neurons than the control group (P<0.05), and the high-dose group had significantly lower expression of LIS1 in the cytoplasm of cerebral cortical neurons than the low-dose group (P<0.05). Immunocytochemical staining showed that at 1, 4, and 7 days after corticosterone intervention, the high-dose group had a significantly lower mean optical density of LIS1 than the control group and the low-dose group (P<0.05). At 7 days after intervention, the low-dose group had a significantly lower mean optical density of LIS1 than the control group (P<0.05).
CONCLUSIONSCorticosterone downregulates the expression of the neuronal migration protein LIS1 in developing cerebral cortical neurons of fetal rats cultured in vitro, and such effect depends on the concentration of corticosterone and duration of corticosterone intervention.
1-Alkyl-2-acetylglycerophosphocholine Esterase ; analysis ; genetics ; Animals ; Cells, Cultured ; Cerebral Cortex ; drug effects ; metabolism ; Corticosterone ; pharmacology ; Dose-Response Relationship, Drug ; Female ; Fetus ; drug effects ; Microtubule-Associated Proteins ; analysis ; genetics ; Pregnancy ; Rats ; Rats, Wistar
4.Prenatal diagnosis of a Pallister-Killian syndrome case through analysis of a supernumerary chromosome using single nucleotide polymorphism array.
Suping LI ; Huaxiang SHEN ; Yuxia JIN ; Xiaodan LIU ; Qinhao SONG ; Zhengyou MIAO
Chinese Journal of Medical Genetics 2016;33(5):682-685
OBJECTIVETo explore the origin of a supernumerary small marker chromosome (sSMC) in a fetus, and to assess the feasibility of single nucleotide polymorphism array (SNP-array) for prenatal diagnosis.
METHODSThe fetal sample was subjected to karyotyping analysis. The identified sSMC was subjected to genome-wide scan using a SNP microarray chip. The results were validated with fluorescence in situ hybridization (FISH).
RESULTSThe karyotype of the fetus was determined as 47,XX,+mar, which was verified by SNP microarray chip analysis as a 34.6 Mb duplication in 12p13.33p11.1. FISH analysis confirmed that the sSMC has originated from chromosome 12p.
CONCLUSIONThe karyotype of the fetus was determined as 47,XX,+i(12)(p10). Tetrasomy 12p is reported to be a marker for Pallister-Killian syndrome, which may result in multi-system anomalies. SNP-array analysis can simultaneously detect microdeletions and microduplications, which may be used for prenatal diagnosis of suspected cases.
Adult ; Chromosome Aberrations ; Chromosome Banding ; Chromosome Disorders ; diagnostic imaging ; embryology ; genetics ; Chromosomes, Human, Pair 12 ; genetics ; Female ; Fetus ; abnormalities ; diagnostic imaging ; metabolism ; Genome-Wide Association Study ; methods ; Humans ; In Situ Hybridization, Fluorescence ; Karyotype ; Karyotyping ; Oligonucleotide Array Sequence Analysis ; methods ; Polymorphism, Single Nucleotide ; Pregnancy ; Ultrasonography, Prenatal ; methods
5.Application of single nucleotide polymorphism-based array analysis for prenatal diagnosis of a fetus with de novo derivative chromosome.
Jianzhu WU ; Zhiming HE ; Zhiqiang ZHANG ; Baojiang CHEN ; Yingjun XIE ; Shaobin LIN
Chinese Journal of Medical Genetics 2016;33(5):678-681
OBJECTIVETo analyze a fetus with increased nuchal translucency and nuchal fold, and to assess the recurrence risk for her family and provide a basis for prenatal diagnosis.
METHODSG-banded karyotyping and single nucleotide polymorphism-based array (SNP-Array) analysis were used to analyze the fetus and her parents.
RESULTSSNP-Array analysis has detected a 41.04 Mb duplication at Xp22.33p11.4 and a 30.51 Mb duplication at 13q31.3q34 in the fetus. G-banding karyotyping indicated that the fetus had a karyotype of 46,X,der(X)(13qter-13q31::Xp11.4-Xp22.3::Xp22.3-Xqter). Her parents had normal results for both G-banding karyotyping and SNP-Array analysis, suggesting that the fetus has carried a de novo derivative chromosome X.
CONCLUSIONSNP-Array combined with G-banding karyotyping is helpful to confirm the composition and connection type of de novo derivative chromosome, which can improve the accuracy of diagnosis and is valuable for the evaluation of recurrence risk.
Adult ; Chromosome Banding ; Chromosome Duplication ; Chromosomes, Human, X ; genetics ; Female ; Fetus ; abnormalities ; metabolism ; Humans ; Karyotyping ; Male ; Oligonucleotide Array Sequence Analysis ; methods ; Polymorphism, Single Nucleotide ; Pregnancy ; Prenatal Diagnosis ; methods ; Sex Chromosome Aberrations
6.Genetic and prenatal diagnosis of a pregnant women with mental retardation.
Lin ZHANG ; Meihong REN ; Guining SONG ; Xuexia LIU ; Jing ZHANG ; Jianliu WANG
Chinese Journal of Medical Genetics 2016;33(5):674-677
OBJECTIVETo conduct genetic testing and prenatal diagnosis for a pregnant women with growth retardation, severe mental retardation, and a history of adverse pregnancies.
METHODSG-banded chromosome analysis, fluorescence in situ hybridization (FISH), and whole genome DNA microarray were used to analyze the patient and her fetus.
RESULTSThe women was found to be a chimera containing two cell lines with 47 and 46 chromosomes, respectively. Both have involved deletion of 18q21.2q23. FISH analysis suggested that the cell line containing 47 chromosomes has harbored a chromosome marker derived from chromosome 15. The marker has contained chromosome 15p involving the SNRPN locus and part of 15q, which gave rise to a karyotype of 47,XX,del18q21.3,+ish mar D15Z1+ SNRPN+[82]/46,XX,del18q21.3[18]. Whole genome DNA microarray confirmed that a 3.044 Mb fragment from 15q11.2q12 was duplicated, which involved NIPA1, SNRPN and other 17 OMIM genes. Duplication of this region has been characterized by low mental retardation, autism, developmental delay. Meanwhile, there was a 17.992 Mb deletion at 18q21.33q23, which contained 39 OMIM genes including TNFRSF11A and PHLPP1. This fragment was characterized by mental retardation, developmental delay, short stature, and cleft palate. Whole genome microarray analysis confirmed that there was a 17.9 Mb deletion at 18q21.33q23, which has been implemented with mental retardation, general growth retardation, short stature, and cleft palate. After genetic counseling, the family decided to terminate the pregnancy at 21st week.
CONCLUSIONCombined chromosome karyotyping, FISH, and whole genome DNA microarray can determine the origin of marker chromosomes and facilitate delineation of its correlation with the clinical phenotype.
Abortion, Eugenic ; Adult ; Chromosome Aberrations ; Chromosome Banding ; Chromosomes, Human, Pair 15 ; genetics ; Chromosomes, Human, Pair 18 ; genetics ; Fatal Outcome ; Female ; Fetus ; abnormalities ; metabolism ; Growth Disorders ; embryology ; genetics ; Humans ; In Situ Hybridization, Fluorescence ; Intellectual Disability ; embryology ; genetics ; Karyotype ; Karyotyping ; Prenatal Diagnosis ; methods
7.Analysis of PKHD1 gene mutation in a family affected with infantile polycystic kidney disease.
Yanbao XIANG ; Huanzheng LI ; Chenyang XU ; Xueqin DONG ; Xueqin XU ; Chong CHEN ; Shaohua TANG
Chinese Journal of Medical Genetics 2016;33(5):662-665
OBJECTIVETo analyze PKHD1 gene mutation in a family affected with autosomal recessive polycystic kidney disease (ARPKD).
METHODSGenomic DNA was extracted from peripheral and cord blood samples obtained from the parents and the fetus. Potential mutations were identified using targeted exome sequencing and confirmed by Sanger sequencing. Pathogenicity of the mutation was analyzed using PolyPhen-2 and SIFT software.
RESULTSCompound heterozygous mutations of c.11314C>T (p.Arg3772*) and a novel missense c.889T>A (p.Cys297Ser) of the PKHD1 gene were identified in the fetus. The mother was found to have carried the c.11314C>T mutation, while the father was found to have carried the c.889T>A mutation. PolyPhen-2 and SIFT predicted that the c.889T>A mutation is probably damaging.
CONCLUSIONA novel mutation in PKHD1 gene was detected in our ARPKD family. Compound heterozygous PKHD1 mutations were elucidated to be the molecular basis for the fetus affected with ARPKD, which has facilitated genetic counseling and implement of prenatal diagnosis for the family.
Abortion, Eugenic ; Adult ; Amino Acid Sequence ; Base Sequence ; DNA Mutational Analysis ; Family Health ; Fatal Outcome ; Female ; Fetal Diseases ; diagnostic imaging ; genetics ; Fetus ; abnormalities ; metabolism ; Humans ; Male ; Mutation ; Polycystic Kidney, Autosomal Recessive ; diagnostic imaging ; embryology ; genetics ; Pregnancy ; Receptors, Cell Surface ; genetics ; Sequence Homology, Amino Acid ; Ultrasonography, Prenatal ; methods
8.Analysis of CGG repeat instability in germline cells from two male fetuses affected with fragile X syndrome.
Ranhui DUAN ; Shiyu LUO ; Wen HUANG ; Haoxian LI ; Ying PENG ; Qian DU ; Lingqian WU
Chinese Journal of Medical Genetics 2016;33(5):606-609
OBJECTIVETo study the pattern of CGG repeat instability within germline cells derived from two male fetuses affected with Fragile X syndrome (FXS).
METHODSThe length and methylation status of CGG repeats within the testes of a fetus carrying a full FXS mutation and another fetus carrying mosaicism FXS mutation were analyzed with Southern blotting and AmplideX FMR1 PCR. Immunohistochemistry was also applied for the measurement of FMR1 protein (FMRP) expression within the testes.
RESULTSFor the fetus carrying the full mutation, Southern blotting analysis of the PCR product has detected an expected band representing the full mutation in its brain and a premutation band of > 160 CGG repeats in its testis. Whereas the pattern of premutation/full mutation in mosaic testis was similar to that in peripheral blood and no sign of contracted fragment was found other than a band of about 160 CGG repeats. Immunohistochemistry assay with a FMRP-specific antibody demonstrated a number of FMRP-positive germ cells, which suggested a contraction from full mutation to premutation alleles.
CONCLUSIONThis study has clarified the instability pattern of CGG repeat and expression of FMRP protein within the testes of fetuses affected with FXS, confirming that the CGG repeat can contract progressively within the germline. The FMRP expression in the testis is consistent with spermatogonium proliferation, and thus the contraction from full mutation to unmethylated premutations may occur for the requirement of FMRP expression during spermatogenesis. The better understanding of FMRP function during germ cell proliferation may elucidate the mechanism underlying the contraction of full FXS mutation in male germline.
Abortion, Eugenic ; Blotting, Southern ; Brain ; embryology ; metabolism ; DNA Methylation ; Fatal Outcome ; Fetus ; cytology ; metabolism ; Fragile X Mental Retardation Protein ; genetics ; metabolism ; Fragile X Syndrome ; diagnosis ; genetics ; Humans ; Immunohistochemistry ; Male ; Mosaicism ; Mutation ; Polymerase Chain Reaction ; Spermatozoa ; metabolism ; Testis ; cytology ; embryology ; metabolism ; Trinucleotide Repeat Expansion ; genetics
9.Comparsion between Intravenous Delivered Human Fetal Bone Marrow Mesenchymal Stromal Cells and Mononuclear Cells in the Treatment of Rat Cerebral Infarct.
Ai-Hua HUANG ; Ping-Ping ZHANG ; Bin ZHANG ; Bu-Qing MA ; Yun-Qian GUAN ; Yi-Dan ZHOU
Acta Academiae Medicinae Sinicae 2016;38(5):497-506
Objective To compare the effecacy of human mesenchymal stromal cell (hMSC) with human mononuclear cell (hMNC) in treating rat cerebral infarct.Methods The SD rat models of cerebral infarct were established by distal middle cerebral artery occlusion (dMCAO). Rats were divided into four groups: sham,ischemia vehicle,MSC,and MNC transplantation groups. For the transplantation group,1×10hMSCs or hMNCs were intravascularly transplanted into the tail vein 1 hour after the ischemia onset. The ischemia vehicle group received dMCAO surgery and intravascular saline injection 1,3,5,and 7 days after the ischemia onset,and then behavioral tests were performed. At 48 h after the ischemia onset,the abundance of Iba- 1,the symbol of activated microglia,was evaluated in the peri-ischemia striatum area; meanwhile,the neurotrophic factors such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in ipsilateral peri-ischemia striatum area were also measured. Results The relative infarct volume in ischemia vehicle group,hMSC group,and hMNC transplantation group were (37.85±4.40)%,(33.41±3.82)%,and (30.23±3.63)%,respectively. The infarct volumes of MSC group (t=2.100,P=0.034) and MNC group (t=2.109,P=0.0009) were significantly smaller than that of ischemia vehicle group,and that of MNC group was significantly smaller than that of MSC group (t=1.743,P=0.043). One day after transplantation,the score of ischemia vehicle group in limb placing test was (4.32±0.71)%,which was significantly lower than that in sham group (9.73±0.36)% (t=2.178,P=8.61×10). The scores of MSC and MNC group,which were (5.09±0.62)% (t=2.1009,P=0.024) and (5.90±0.68)% (t=2.1008,P=0.0001),respectively,were significantly higher than that of ischemia vehicle group; also,the score of MNC group was significantly higher than that of MSC group(t=2.1009,P=0.0165). The contralateral forelimb scores of MSC and MNC groups in beam walking test were (5.56±0.86)% (t=2.120,P=0.020) and (5.13±0.95)% (t=2.131,P=0.003),were both significantly lower than that of ischemia vehicle group [(6.47±0.61)%]. Three days after the transplantation,the limb placing test score of MNC group [(6.91±1.10)%] was significantly higher than that of ischemia vehicle group (5.80±0.82)% (t=2.110,P=0.027). The score of MSC group [(6.30±0.77)%] showed no statistic difference with that of ischemia vehicle group(t=2.101,P=0.199).The contralateral forelimb scores of MNC group in beam walking test [(4.34±0.58)%] was significantly lower than that of ischemia vehicle group [(5.31±0.65)%] (t=2.100,P=0.006) and MSC group [(4.92±0.53)%] (t=2.100,P=0.041); there was no statistic difference between MSC group and ischemia vehicle group (t=2.109,P=0.139). The relative abundance of Iba- 1 in sham,ischemia vehicle,MSC,and MNC groups was 1.00+0.00,1.72±0.21,1.23±0.08,and 1.48±0.06,respectively. The Iba-1 relative abundance of ischemia vehicle group was significantly higher than that of sham group (t=2.262,P=2.9×10). The Iba-1 relative abundances of both MSC (t=2.178,P=3.91×10)and MNC (t=2.200,P=0.007)groups were significantly lower than that of ischemia vehicle group. It was also significantly lower in MNC group than in MSC group also (t=2.120,P=7.09×10). Three days after transplantation,the BDNF and GDNF levels of MSC group,which were (531.127±73.176)pg/mg (t=2.109,P=0.003)and(127.780±16.733)pg/mg(t=2.100,P=2.76×10),respectively,were significantly higher than those of ischemia vehicle group,which were (401.988±89.006)pg/mg and (86.278±14.832) pg/mg,respectively. The BDNF and GDNF levels of MNC group,which were (627.429±65.646)pg/mg (t=2.144,P=0.017) and (153.117±20.443)pg/mg (t=2.109,P=0.010),respectively,were all significantly higher than that of MSC group. At day 7,the BDNF and GDNF levels of MSC group,which were (504.776±83.282)pg/mg (t=2.101,P=0.005) and (81.641±11.019)pg/mg (t=2.100,P=0.002),respectively,were significantly higher than those of ischemia vehicle group,which were (389.257±70.440)pg/mg and (64.322±9.855) pg/mg,respectively. The BDNF and GDNF levels of MNC group,which were (589.068±63.323)pg/mg (t=2.100,P=0.027) and (102.161±19.932)pg/mg (t=2.144,P=0.017),respectively,were all significantly higher than that of MSC group. Conclusions Both hMSC and hMNC are beneficial to the ischemia-damaged brain when they are intravascularly transplanted within 1 h after the onset of ischemia. The anti-inflammation ability and secretion of neurotrophic factors are the underlying mechanisms of the therapeutic effects. MNC is more effective than MSC in reducing infarct area and improving behaviors,which might be explained by the fact that MNC induces more GDNF and BDNF in brain than MSC.
Animals
;
Bone Marrow
;
Brain Ischemia
;
therapy
;
Brain-Derived Neurotrophic Factor
;
metabolism
;
Disease Models, Animal
;
Fetus
;
Glial Cell Line-Derived Neurotrophic Factor
;
metabolism
;
Humans
;
Infarction, Middle Cerebral Artery
;
therapy
;
Leukocytes, Mononuclear
;
cytology
;
Male
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells
;
cytology
;
Rats
;
Rats, Sprague-Dawley
10.Glucose Homeostasis during Fetal and Neonatal Period.
Korean Journal of Perinatology 2016;27(2):95-102
Glucose is essential for energy metabolism in human, especially in brain, and is a source of energy storage in the form of glycogen, fat and protein. During fetal life, the predominant source of energy is also glucose, which crosses the placenta by facilitated diffusion. There is very little endogenous glucose production under normal circumstances during fetal life. During labor, the fetus is exposed to physiological challenges that require metabolic adaptation. A healthy infant successfully manages the postnatal transition by mobilizing and using alternative. After birth, there is a rapid surge in catecholamine and glucagon levels, and a steady decrease in insulin, as blood glucose levels decline. These hormonal changes induce enzyme activities that lead to glycogenolysis and gluconeogenesis. During the first 24-48 hours of life, plasma glucose concentrations of neonates are typically lower than later in life. Distinguishing between transitional neonatal glucose regulation in normal neonates and hypoglycemia that persists or occurs for the first time beyond the first 72 hours of life is important for prompt diagnosis and treatment to avoid serious consequences.
Blood Glucose
;
Brain
;
Diagnosis
;
Energy Metabolism
;
Facilitated Diffusion
;
Fetus
;
Glucagon
;
Gluconeogenesis
;
Glucose*
;
Glycogen
;
Glycogenolysis
;
Homeostasis*
;
Humans
;
Hypoglycemia
;
Infant
;
Infant, Newborn
;
Insulin
;
Parturition
;
Placenta

Result Analysis
Print
Save
E-mail