1.Human Umbilical Cord Blood CD34+Cells InducedAngiogenesis in Ischemic Limb of Mice.
Zuo-Guan CHEN ; Yong-Peng DIAO ; Zhi-Yuan WU ; Sheng YAN ; Yong-Jun LI
Acta Academiae Medicinae Sinicae 2016;38(5):491-496
Objective To observe the effect of the expanded human umbilical cord blood CD34+cells in ischemic limb of mice and analyse the relationship between the CD34+cells and angiogenesis. Methods Human umbilical cord blood was collected and CD34+cells were separated for expanding. Mice limbs ischemia models were established (n=15) and randomly divided into three groups:expanded CD34+cells group (n=5),fresh CD34+cells group (n=5),and control group(n=5). CD34+cells were detected by DiI dye tracing and antihuman nuclear antigen antibody(HNA) immunohistochemical staining. The improvement of blood reperfusion was evaluated by indicators including limb temperature,CD31 staining,and transforming growth factor-β1 (TGF-β1) mRNA expression. Results On days 14 (t=5.421,P=0.001;t=0.616,P=0.000) and 28(t=10.780,P=0.000; t=12.123,P=0.000),both expanded CD34+cells group and fresh CD34+cells group enjoyed better temperature improvement. Days 28 later,the vascular densities in the expanded CD34+cells group and the fresh CD34+cells group were 592.3±24.6 (t=26.386,P=0.000) and 530.7±25.5 (t=21.502,P=0.000),which were significantly higher than that in control group 219.7±19.9. The TGF-β1 mRNA expression in the expanded CD34+cells group and the fresh CD34+cells group were (0.578±0.050) copies (t=12.376,P=0.000) and (0.504±0.080) copies (t=7.098,P=0.000),both over control group [(0.224±0.040)copies]. Conclusions In vitro culture of cord blood CD34+cells can emigrate to ischemic zone and induce angiogenesis to alleviate ischemia. Thus,it may provide a treatment option for lower limb ischemia.
Animals
;
Antigens, CD34
;
metabolism
;
Cell Transplantation
;
Cells, Cultured
;
Extremities
;
physiopathology
;
Fetal Blood
;
cytology
;
Humans
;
Ischemia
;
therapy
;
Mice
;
Neovascularization, Physiologic
;
Random Allocation
;
Transforming Growth Factor beta1
;
metabolism
2.The Effect of Umbilical Cord Blood Derived Mesenchymal Stem Cells in Monocrotaline-induced Pulmonary Artery Hypertension Rats.
Hyeryon LEE ; Jae Chul LEE ; Jung Hyun KWON ; Kwan Chang KIM ; Min Sun CHO ; Yoon Sun YANG ; Wonil OH ; Soo Jin CHOI ; Eun Seok SEO ; Sang Joon LEE ; Tae Jun WANG ; Young Mi HONG
Journal of Korean Medical Science 2015;30(5):576-585
Pulmonary arterial hypertension (PAH) causes right ventricular failure due to a gradual increase in pulmonary vascular resistance. The purposes of this study were to confirm the engraftment of human umbilical cord blood-mesenchymal stem cells (hUCB-MSCs) placed in the correct place in the lung and research on changes of hemodynamics, pulmonary pathology, immunomodulation and several gene expressions in monocrotaline (MCT)-induced PAH rat models after hUCB-MSCs transfusion. The rats were grouped as follows: the control (C) group; the M group (MCT 60 mg/kg); the U group (hUCB-MSCs transfusion). They received transfusions via the external jugular vein a week after MCT injection. The mean right ventricular pressure (RVP) was significantly reduced in the U group after the 2 week. The indicators of RV hypertrophy were significantly reduced in the U group at week 4. Reduced medial wall thickness in the pulmonary arteriole was noted in the U group at week 4. Reduced number of intra-acinar muscular pulmonary arteries was observed in the U group after 2 week. Protein expressions such as endothelin (ET)-1, endothelin receptor A (ERA), endothelial nitric oxide synthase (eNOS) and matrix metalloproteinase (MMP)-2 significantly decreased at week 4. The decreased levels of ERA, eNOS and MMP-2 immunoreactivity were noted by immnohistochemical staining. After hUCB-MSCs were administered, there were the improvement of RVH and mean RVP. Reductions in several protein expressions and immunomodulation were also detected. It is suggested that hUCB-MSCs may be a promising therapeutic option for PAH.
Animals
;
Cytokines/metabolism
;
Disease Models, Animal
;
Endothelin-1/metabolism
;
Fetal Blood/*cytology
;
Gene Expression Regulation/drug effects
;
Hemodynamics
;
Humans
;
Hypertension, Pulmonary/chemically induced/*therapy
;
Hypertrophy, Right Ventricular/physiopathology
;
Immunohistochemistry
;
Lung/metabolism/pathology
;
Male
;
Matrix Metalloproteinase 2/metabolism
;
*Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells/*cytology/metabolism
;
Monocrotaline/toxicity
;
Nitric Oxide Synthase Type III/metabolism
;
Pulmonary Artery/pathology
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, Endothelin A/metabolism
3.Stem Cell Therapy for Bronchopulmonary Dysplasia: Bench to Bedside Translation.
So Yoon AHN ; Yun Sil CHANG ; Won Soon PARK
Journal of Korean Medical Science 2015;30(5):509-513
Bronchopulmonary dysplasia (BPD), a chronic lung disease affecting very premature infants, is a major cause of mortality and long-term morbidities despite of current progress in neonatal intensive care medicine. Though there has not been any effective treatment or preventive strategy for BPD, recent stem cell research seems to support the assumption that stem cell therapy could be a promising and novel therapeutic modality for attenuating BPD severity. This review summarizes the recent advances in stem cell research for treating BPD. In particular, we focused on the preclinical data about stem cell transplantation to improve the lung injury using animal models of neonatal BPD. These translational research provided the data related with the safety issue, optimal type of stem cells, optimal timing, route, and dose of cell transplantation, and potency marker of cells as a therapeutic agent. Those are essential subjects for the approval and clinical translation. In addition, the successful phase I clinical trial results of stem cell therapies for BPD are also discussed.
Bronchopulmonary Dysplasia/*therapy
;
Cell- and Tissue-Based Therapy
;
Clinical Trials as Topic
;
Fetal Blood/cytology/transplantation
;
Humans
;
Infant, Newborn
;
Infant, Premature
;
*Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells/cytology
4.Anti-mouse CD122 antibody promotes the hematopoietic repopulating capacity of cord blood CD34⁺ cells in NOD/SCID mice.
Men-Yao SHENG ; Hui SHI ; Wen XING ; Wen-Jun WANG ; Xiao-Hui SI ; Jie BAI ; Wei-Ping YUAN ; Yuan ZHOU ; Feng-Chun YANG
Journal of Experimental Hematology 2014;22(6):1673-1677
The study was aimed to investigate the effect of anti-mouse CD122 antibody on the hematopoietic repopulating capacity of cord blood CD34⁺ cells in a humanized murine model-non obese diabetic/severe combined immunodeficiency (NOD/SCID) mice. After sublethal irradiation with γ-ray, NOD/SCID mice were intraperitoneally injected with 200 µg mouse isotype control antibody or anti-mouse CD122 antibody. Human cord blood CD34⁺ cells or phosphate-buffered saline (PBS) were injected via the tail vein at 6-8 hours later. Cohort of the mice injected with anti-mice CD122 antibody or control antibody alone were sacrificed at different time point (at week 2, 3, and 4 weeks) after the injection, and the percentage of NK cells in the peripheral blood was analyzed by flow cytometry. To evaluate the effect of anti-mouse CD122 antibody on the repopulating capacity of cord blood CD34⁺ cells in the recipient mice, phenotype analysis was performed in the bone marrow at 6 and 8 weeks after the transplantation. The results showed that the proportion of NK cells in the peripheral blood were (4.6 ± 0.6)% and (5.7 ± 1.7)% at week 2 and 3 after anti-CD122 antibody injection respectively,which decreased by 60%, compared with the mice injected with isotype control antibody. After 6 and 8 weeks of cord blood CD34⁺ cell transplantation,the percentage of human CD45⁺ in the bone marrow of the recipient mice treated with anti-mice CD122 antibody was (63.0 ± 12.2)% and (53.2 ± 16.3)%,respectively,which were dramatically higher than that in the mice treated with isotype control antibody (7.7 ± 3.6)% and (6.1 ± 2.4)%. Moreover,at 8 weeks after transplantation,human CD34⁺ cells appeared significantly in the recipients treated with anti-CD122 antibody. It is concluded that the anti-mouse CD122 antibody enhances the hematopoietic repopulating capacity of cord blood CD34⁺ cells in the NOD/SCID mice through decreasing the proportion of NK cells.
Animals
;
Antibodies
;
immunology
;
Antigens, CD34
;
Bone Marrow
;
Cord Blood Stem Cell Transplantation
;
Fetal Blood
;
immunology
;
Hematopoietic Stem Cell Transplantation
;
Hematopoietic System
;
cytology
;
immunology
;
Humans
;
Interleukin-2 Receptor beta Subunit
;
immunology
;
Killer Cells, Natural
;
Mice
;
Mice, Inbred NOD
;
Mice, SCID
;
Transplantation, Heterologous
5.Intratracheal Administration of Umbilical Cord Blood-Derived Mesenchymal Stem Cells in a Patient with Acute Respiratory Distress Syndrome.
Youjin CHANG ; So Hee PARK ; Jin Won HUH ; Chae Man LIM ; Younsuck KOH ; Sang Bum HONG
Journal of Korean Medical Science 2014;29(3):438-440
Umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) have been introduced as a possible therapy in acute lung injury and acute respiratory distress syndrome (ARDS). This case history is reported of a 59-yr-old man who was treated with MSCs in the course of ARDS and subsequent pulmonary fibrosis. He received a long period of mechanical ventilation and weaning proved difficult. On hospital day 114, he underwent the intratracheal administration of UCB-derived MSCs at a dose of 1 x 10(6)/kg. After cell infusion, an immediate improvement was shown in his mental status, his lung compliance (from 22.7 mL/cmH2O to 27.9 mL/cmH2O), PaO2/FiO2 ratio (from 191 mmHg to 334 mmHg) and his chest radiography over the course of three days. Even though he finally died of repeated pulmonary infection, our current findings suggest the possibility of using MSCs therapy in an ARDS patient. It is the first clinical case of UCB-derived MSCs therapy ever reported.
Bacterial Infections/diagnosis
;
Drug Resistance, Multiple, Bacterial
;
Fetal Blood/*cytology
;
Humans
;
Male
;
*Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells/*cytology
;
Middle Aged
;
Respiratory Distress Syndrome, Adult/complications/radiography/*surgery
;
Seizures/etiology
;
Shock, Septic/diagnosis
;
Tomography, X-Ray Computed
;
Treatment Outcome
6.Effect of Human Parathyroid Hormone on Hematopoietic Progenitor Cells in NOD/SCID Mice Co-Transplanted with Human Cord Blood Mononuclear Cells and Mesenchymal Stem Cells.
Yeon Jung LIM ; Kyoujung HWANG ; Miyeon KIM ; Youl Hee CHO ; Jong Hwa LEE ; Young Ho LEE ; Jong Jin SEO
Yonsei Medical Journal 2013;54(1):238-245
PURPOSE: We evaluated the effect of human parathyroid hormone (hPTH) on the engraftment and/or in vivo expansion of hematopoietic stem cells in an umbilical cord blood (UCB)-xenotransplantation model. In addition, we assessed its effect on the expression of cell adhesion molecules. MATERIALS AND METHODS: Female NOD/SCID mice received sublethal total body irradiation with a single dose of 250 cGy. Eighteen to 24 hours after irradiation, 1x107 human UCB-derived mononuclear cells (MNCs) and 5x106 human UCB-derived mesenchymal stem cells (MSCs) were infused via the tail vein. Mice were randomly divided into three groups: Group 1 mice received MNCs only, Group 2 received MNCs only and were then treated with hPTH, Group 3 mice received MNCs and MSCs, and were treated with hPTH. RESULTS: Engraftment was achieved in all the mice. Bone marrow cellularity was approximately 20% in Group 1, but 70-80% in the hPTH treated groups. Transplantation of MNCs together with MSCs had no additional effect on bone marrow cellularity. However, the proportion of human CD13 and CD33 myeloid progenitor cells was higher in Group 3, while the proportion of human CD34 did not differ significantly between the three groups. The proportion of CXCR4 cells in Group 3 was larger than in Groups 1 and 2 but without statistical significance. CONCLUSION: We have demonstrated a positive effect of hPTH on stem cell proliferation and a possible synergistic effect of MSCs and hPTH on the proportion of human hematopoietic progenitor cells, in a xenotransplantation model. Clinical trials of the use of hPTH after stem cell transplantation should be considered.
Animals
;
Bone Marrow/metabolism
;
Cell Proliferation
;
Female
;
Fetal Blood/*cytology
;
Flow Cytometry
;
Hematopoietic Stem Cell Transplantation
;
Hematopoietic Stem Cells/*drug effects
;
Humans
;
Leukocytes, Mononuclear/*cytology
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells/*cytology
;
Mice
;
Mice, Inbred NOD
;
Mice, SCID
;
Parathyroid Hormone/*therapeutic use
;
Stem Cells/cytology
;
Transplantation, Heterologous
7.Effects of umbilical cord blood monocytes transplantation on EPO protein and oligodendrocyte progenitors in neonatal rats with hypoxic-ischemic brain damage.
Jia-Fen JI ; Jin-Ping ZHANG ; Xiao-Li WANG ; Qing-Jie MU ; Meng-Meng FAN ; Yu-Xi CHEN
Chinese Journal of Contemporary Pediatrics 2013;15(9):775-778
OBJECTIVETo study the effects of umbilical cord blood monocytes (UCBMC) transplantation on erythropoietin (EPO) protein and oligodendrocyte progenitor cells in hypoxia-ischemia (HI) neonatal rats.
METHODSForty seven-day-old Sprague-Dawley rats were randomly divided into normal control (N), HI, UCBMC and HI+UCBMC groups (n=10 each). Hypoxic-ischemic brain damage (HIBD) model was prepared according to the Rice method. Twenty-four hours after hypoxia, the N and HI groups were injected with 2 μL phosphate buffered saline (PBS), and the UCBMC and HI+UCBMC groups were injected with 3×10(6) UCBMC via the lateral ventricle. EPO protein and oligodendrocyte progenitor cells in the subventricular zone of the injured brain were observed by EPO/DAPI and NG2/DAPI immunofluorescence double staining, and their correlation was analyzed.
RESULTSSeven days after transplantation, there were more NG2(+)DAPI(+) and EPO(+)DAPI(+) cells in the HI+UCBMC group than in the UCBMC (P<0.05), N and HI groups (P<0.01). More NG2(+)DAPI(+) and EPO(+)DAPI(+) cells were observed in the UCBMC group compared with the N and HI groups (P<0.01). There were more NG2(+)DAPI(+) cells in the N group than in the HI group (P<0.01). The number of NG2(+)DAPI(+) cells was correlated with the number of EPO(+)DAPI(+) cells in the HI+UCBMC group (r=0.898, β=1.4604, P<0.01).
CONCLUSIONSUCBMC can promote expression of oligodendrocyte progenitor cells, which is correlated with an increase in EPO protein and thus repairs brain white matter damage in neonatal rats with HIBD.
Animals ; Animals, Newborn ; Erythropoietin ; analysis ; biosynthesis ; Fetal Blood ; cytology ; Hypoxia-Ischemia, Brain ; metabolism ; pathology ; therapy ; Monocytes ; transplantation ; Oligodendroglia ; pathology ; Rats ; Rats, Sprague-Dawley ; Stem Cells ; pathology
8.Transplantation of human umbilical cord-derived endothelial progenitor cells promotes re-endothelialization of the injured carotid artery after balloon injury in New Zealand white rabbits.
Cheng-heng HU ; Xiao KE ; Kui CHEN ; Da-ya YANG ; Zhi-min DU ; Gui-fu WU
Chinese Medical Journal 2013;126(8):1480-1485
BACKGROUNDCell transplantation has great potential for promoting endothelial repair and reducing the complications of percutaneous coronary intervention (PCI). The aim of this study was to investigate the effect of transplantation of human umbilical cord blood endothelial progenitor cells (EPCs) on injured arteries.
METHODSUmbilical cord blood mononuclear cells were obtained from post-partum lying-in women, and EPCs were isolated, cultured, expanded and identified by immunofluorescence. The carotid arterial endothelium of New Zealand white rabbits was injured by dilatation with a 3F balloon, and the EPCs were injected into the lumen of the injured artery in the transplanted group (n = 16), while an equal volume of phosphated buffered saline (PBS) was injected into the control group after balloon injury (n = 16). The animals were sacrificed after either 2 or 4 weeks, and the grafted cells were identified by double immunofluorescence staining with human nuclear antigen (HNA) and CD31 antibodies. Arterial cross sections were analyzed by pathology, immunohistochemistry and morphometry to evaluate the reparative effects of EPCs. Proliferating cell nuclear antigen (PCNA) and transforming growth factor (TGF)-β1 mRNA expression were detected by reverse transcription-polymerase chain reaction (RT-PCR).
RESULTSFluorescence-labeled EPCs were found in the neointima. The neointimal area and the neointimal/medial area ratio were significantly lower in the transplanted group than in the control group (P < 0.05). von Willebrand factor (vWF) immunohistostaining showed more VWF-positive cells in the transplanted animals than in the controls (8.75 ± 2.92 vs. 4.50 ± 1.77, P < 0.05). Compared with the control group, the transplanted group had lower expression of PCNA mRNA (0.67 ± 0.11 vs. 1.25 ± 0.40, P < 0.01) and higher expression of TGF-β1 mRNA (1.10 ± 0.21 vs. 0.82 ± 0.07, P < 0.05).
CONCLUSIONSEPCs derived from human umbilical cord blood were successfully transplanted into injured vessels. The transplanted EPCs inhibited neointimal hyperplasia and promoted vascular re-endothelialization.
Animals ; Carotid Artery Injuries ; immunology ; pathology ; therapy ; Cell Differentiation ; Cells, Cultured ; Cytokines ; genetics ; Endothelial Cells ; cytology ; physiology ; Fetal Blood ; cytology ; Humans ; Hyperplasia ; Male ; Neointima ; pathology ; Proliferating Cell Nuclear Antigen ; genetics ; RNA, Messenger ; analysis ; Rabbits ; Stem Cell Transplantation ; Transforming Growth Factor beta1 ; genetics
9.Effect of different cryopreservation time on quality of umbilical cord blood cells.
Lu HUANG ; Gui-Qi SONG ; Yun WU ; Jian WANG
Journal of Experimental Hematology 2013;21(1):177-180
This study was aimed to explore the effect of different cryopreservation time on recovery rate of cord blood stem cells, and analyze the influence of cord blood cells after thawing on the engraftment speed of cord blood cells in patients. 20 cord blood units were stored at -196°C for 1 - 10 years. The cell viability, content of total nucleated cell (TNC), CD34(+) cells and the colony forming units of granulocyte/macrophage (CFU-GM) were assessed after thawing, the impact of cell recovery on engraftment speed in patients was analyzed. The results showed that as compared with data provided by Umbilical Cord Blood Bark, the different cryopreservation time had no effect on yield of cord blood stem cells after thawing. The cell viability was (92.75 ± 2.55)% after thawing, the yields of TNC, CD34(+) cells and CFU-GM were 89.9%, 84.8% and 84.3%, compared with that of pre-freezing, their differences were statistically significant (P = 0.000), however, loss of cells had no effect on the time of neutrophils and platelets engraftment. The TNC and CD34(+)cell count after thawing correlated closely with that of pre-freezing (r = 0.954 and r = 0.931, P = 0.000), but CFU-GM content poorly correlated with that (r = 0.285, P = 0.223). It is concluded that cryopreservation and thawing process can damage the cord blood stem cells, leading to cell loss, but not affect transplant results.
Cell Count
;
Cell Survival
;
Cord Blood Stem Cell Transplantation
;
methods
;
Cryopreservation
;
methods
;
Fetal Blood
;
cytology
;
Humans

Result Analysis
Print
Save
E-mail