1.Surface modification of multifunctional ferrite magnetic nanoparticles and progress in biomedicine.
Linxue ZHANG ; Nuernisha ALIFU ; Zhongwen LAN ; Zhong YU ; Qifan LI ; Xiaona JIANG ; Chuanjian WU ; Ke SUN
Journal of Biomedical Engineering 2023;40(2):378-383
Magnetic ferrite nanoparticles (MFNPs) have great application potential in biomedical fields such as magnetic resonance imaging, targeted drugs, magnetothermal therapy and gene delivery. MFNPs can migrate under the action of a magnetic field and target specific cells or tissues. However, to apply MFNPs to organisms, further modifications on the surface of MFNPs are required. In this paper, the common modification methods of MFNPs are reviewed, their applications in medical fields such as bioimaging, medical detection, and biotherapy are summarized, and the future application directions of MFNPs are further prospected.
Ferric Compounds
;
Magnetic Resonance Imaging/methods*
;
Magnetics
;
Magnetite Nanoparticles/therapeutic use*
;
Nanoparticles
2.Progress in the Application of Magnetic Nanoparticles in Forensic Trace Analysis.
Zhong-Ping CHENG ; Yan-Fei LIU ; Xing-Min XU ; Yao-Nan MO
Journal of Forensic Medicine 2023;39(2):168-175
Given the complexity of biological samples and the trace nature of target materials in forensic trace analysis, a simple and effective method is needed to obtain sufficient target materials from complex substrates. Magnetic nanoparticles (MNPs) have shown a wide range of application value in many research fields, such as biomedicine, drug delivery and separation, due to their unique superparamagnetic properties, stable physical and chemical properties, biocompatibility, small size, high specific surface area and other characteristics. To apply MNPs in the pretreatment of forensic materials, maximize the extraction rate of the target materials, and minimize interference factors to meet the requirements of trace analysis of the target materials, this paper reviews the application of MNPs in the fields of forensic toxicological analysis, environmental forensic science, trace evidence analysis and criminal investigation in recent years, and provides research ideas for the application of MNPs in forensic trace analysis.
Magnetite Nanoparticles/chemistry*
;
Forensic Medicine
;
Forensic Sciences
;
Forensic Toxicology
3.Research progress on effect of magnetic nanoparticle composite scaffold on osteogenesis.
Wenni WANG ; Chaoqun CHEN ; Xinhua GU
Journal of Zhejiang University. Medical sciences 2022;51(1):102-107
Magnetic nanoparticles (MNP) have been widely used as biomaterials due to their unique magnetic responsiveness and biocompatibility, which also can promote osteogenic differentiation through their inherent micro-magnetic field. The MNP composite scaffold retains its superparamagnetism, which has good physical, mechanical and biological properties with significant osteogenic effects and . Magnetic field has been proved to promote bone tissue repair by affecting cell metabolic behavior. MNP composite scaffolds under magnetic field can synergically promote bone tissue repair and regeneration, which has great application potential in the field of bone tissue engineering. This article summarizes the performance of magnetic composite scaffold, the research progress on the effect of MNP composite scaffold with magnetic fields on osteogenesis, to provide reference for further research and clinical application.
Cell Differentiation
;
Magnetite Nanoparticles
;
Osteogenesis
;
Tissue Engineering
;
Tissue Scaffolds
4.Detection method of nonlinear magnetized harmonic signal of medical magnetic nanoparticles.
Yangyang LIU ; Li KE ; Qiang DU ; Wanni ZU ; Ce JIANG ; Yulu ZHANG
Journal of Biomedical Engineering 2021;38(1):56-64
Medical magnetic nanoparticles are nano-medical materials with superparamagnetism, which can be collected in the tumor tissue through blood circulation, and magnetic particle imaging technology can be used to visualize the concentration of magnetic nanoparticles in the living body to achieve the purpose of tumor imaging. Based on the nonlinear magnetization characteristics of magnetic particles and the frequency characteristics of their magnetization, a differential detection method for the third harmonic of magnetic particle detection signals is proposed. It was modeled and analyzed, to study the nonlinear magnetization response characteristics of magnetic particles under alternating field, and the spectral characteristics of magnetic particle signals. At the same time, the relationship between each harmonic and the amount of medical magnetic nanoparticle samples was studied. On this basis, a signal detection experimental system was built to analyze the spectral characteristics and power spectral density of the detected signal, and to study the relationship between the signal and the excitation frequency. The signal detection experiment was carried out by the above method. The experimental results showed that under the alternating excitation field, the medical magnetic nanoparticles would generate a spike signal higher than the background sensing signal, and the magnetic particle signal existed in the odd harmonics of the detected signal spectrum. And the spectral energy was concentrated at the third harmonic, that is, the third harmonic magnetic particle signal detection that meets the medical detection requirement could be realized. In addition, the relationship between each harmonic and the particle sample volume had a positive growth relationship, and the detected medical magnetic nanoparticle sample volume could be determined according to the relationship. At the same time, the selection of the excitation frequency was limited by the sensitivity of the system, and the detection peak of the third harmonic of the detection signal was reached at the excitation frequency of 1 kHz. It provides theoretical and technical support for the detection of medical magnetic nanoparticle imaging signals in magnetic particle imaging research.
Magnetics
;
Magnetite Nanoparticles
5.Application of magnetotactic bacteria and magnetosomes in cancer therapy: a review.
Zhaoming LIU ; Min LIN ; Xue YANG ; Xia JI
Chinese Journal of Biotechnology 2021;37(9):3190-3200
The targeting of anti-tumor drugs is an important means of tumor treatment and reducing drug side effects. Oxygen-depleted hypoxic regions in the tumour, which oxygen consumption by rapidly proliferative tumour cells, are generally resistant to therapies. Magnetotactic bacteria (MTB) are disparate array of microorganism united by the ability to biomineralize membrane-encased, single-magnetic-domain magnetic crystals (magnetosomes) of minerals magnetite or greigite. MTB by means of flagella, migrate along geomagnetic field lines and towards low oxygen concentrations. MTB have advantage of non-cytotoxicity and excellent biocompatibility, moreover magnetosomes (BMs) is more powerful than artificial magnetic nanoparticles(MNPs). This review has generally described the biological and physical properties of MTB and magnetosomes, More work deals with MTB which can be used to transport drug into tumor based on aerotactic sensing system as well as the competition of iron which is a key factor to proliferation of tumor. In addition, we summarized the research of magnetosomes, which be used as natural nanocarriers for chemotherapeutics, antibodies, vaccine DNA. Finally, We analyzed the problems faced in the tumor treatment using of MTB and bacterial magnetosomes and prospect development trends of this kind of therapy.
Bacteria
;
Ferrosoferric Oxide
;
Gram-Negative Bacteria
;
Magnetics
;
Magnetosomes
;
Neoplasms/therapy*
6.Simulation research on magnetoacoustic B-scan imaging of magnetic nanoparticles.
Xiaoyu SHI ; Guoqiang LIU ; Xiaoheng YAN ; Yanhong LI
Journal of Biomedical Engineering 2020;37(5):786-792
As drug carriers, magnetic nanoparticles can specifically bind to tumors and have the potential for targeted therapy. It is of great significance to explore non-invasive imaging methods that can detect the distribution of magnetic nanoparticles. Based on the mechanism that magnetic nanoparticles can generate ultrasonic waves through the pulsed magnetic field excitation, the sound pressure wave equation containing the concentration information of magnetic nanoparticles was derived. Using the finite element method and the analytical solution, the consistent transient pulsed magnetic field was obtained. A three-dimensional simulation model was constructed for the coupling calculation of electromagnetic field and sound field. The simulation results verified that the sound pressure waveform at the detection point reflected the position of magnetic nanoparticles in biological tissue. Using the sound pressure data detected by the ultrasonic transducer, the B-scan imaging of the magnetic nanoparticles was achieved. The maximum error of the target area position was 1.56%, and the magnetic nanoparticles regions with different concentrations were distinguished by comparing the amplitude of the boundary signals in the image. Studies in this paper indicate that B-scan imaging can quickly and accurately obtain the dimensional and positional information of the target region and is expected to be used for the detection of magnetic nanoparticles in targeted therapy.
Acoustics
;
Computer Simulation
;
Magnetics
;
Magnetite Nanoparticles
;
Tomography
7.Method for active ingredients' in vivo target identification of traditional Chinese medicine using magnetic nanoparticles.
Yan-Hang WANG ; Xiao-Min SONG ; Yong JIANG ; Peng-Fei TU ; Ke-Wu ZENG
China Journal of Chinese Materia Medica 2019;44(13):2657-2661
Target identification is an important prerequisite for the study of medicine action mechanism. Currently,drug target identification is mostly based on various cell models in vitro. However,the growth microenvironment,nutrition metabolism,biological properties as well as functions are quite different between in vitro cell culture and physiological environment in vivo; wherefore,it is a challenging scientific issue to establish an effective method for identifying drug targets in vivo condition. In this study,we successfully prepared a kind of magnetic nanoparticles( MNPs) which can be chemically modified by the hydroxyl structure of natural bioactive compound echinacoside( ECH) via the epoxy group label on the surface of MNPs. Therefore,organ-selective and recoverable nanoscale target-recognizing particles were prepared. We then intravenously injected the ECH-binding MNPs into rats and distributed them to specific organs in vivo. After cell endocytosis,ECH-binding MNPs captured target proteins in situ for further analysis. Based on this method,we discovered several potential target proteins in the spleen lysates for ECH,and preliminarily clarified the immuno-regulation mechanism of ECH. Collectively,our strategy developed a proof-of-concept technology using nanoparticles for in vivo target identification,and also provided a feasible approach for drug target prediction and pharmacological mechanism exploration.
Animals
;
Drug Delivery Systems
;
Endocytosis
;
Glycosides
;
analysis
;
Magnetics
;
Magnetite Nanoparticles
;
Medicine, Chinese Traditional
;
Proof of Concept Study
;
Rats
8.Characterization of Mycobacterium tuberculosis dihydrofolate reductase immobilized on magnetic nanoparticles.
Wei ZHOU ; Jinpeng LU ; Yaping LI ; Linyu YANG ; Xiaolei HU ; Fei LIAO ; Xiaolan YANG
Chinese Journal of Biotechnology 2019;35(3):513-521
To explore the immobilization of target proteins for screening libraries of ligand mixtures, magnetic submicron particles (MSP) functionalized with Ni²⁺-NTA and carboxyl were compared for the immobilization of Mycobacterium tuberculosis dihydrofolate reductase (MtDHFR). MtDHFR fused with 6×His was expressed, purified and characterized for kinetics. MtDHFR was immobilized on Ni²⁺-NTA-functionalized MSP directly and carboxyl-functionalized MSP upon activation. The immobilization capacity, residual activity, thermostability and affinities for putative inhibitors were characterized. MtDHFR immobilized on Ni²⁺-NTA-functionalized MSP retained about 32% activity of the free one with the immobilization capacity of (93±12) mg/g of MSP (n=3). Ni²⁺ and EDTA synergistically inhibited MtDHFR activity, while Fe³⁺ had no obvious interference. MtDHFR immobilized on carboxyl-functionalized MSP retained (87±4)% activity of the free one with the immobilization capacity of (8.6±0.6) mg/g MSP (n=3). In 100 mmol/L HEPES (pH 7.0) containing 50 mmol/L KCl, there was no significant loss of the activities of the free and immobilized MtDHFR after storage at 0 °C for 16 h, but nearly 60% and 35% loss of their activities after storage at 25 °C for 16 h, respectively. The inhibition effects of methotrexate on the immobilized and free MtDHFR were consistent (P>0.05). The immobilization of MtDHFR on carboxyl-functionalized MSP was thus favorable for higher retained activity and better thermostability, with promise for rapid screening of its ligand mixtures.
Enzyme Stability
;
Enzymes, Immobilized
;
Hydrogen-Ion Concentration
;
Kinetics
;
Ligands
;
Magnetite Nanoparticles
;
Mycobacterium tuberculosis
;
Temperature
;
Tetrahydrofolate Dehydrogenase
9.Facile Synthesis of the Magnetic Metal Organic Framework Fe3O4@UiO-66-NH2 for Separation of Strontium.
Liang Liang YIN ; Xiang Yin KONG ; Yao ZHANG ; Yan Qin JI
Biomedical and Environmental Sciences 2018;31(6):483-488
A magnetic metal organic framework (MMOF) was synthesized and used to separate Sr2+ in aqueous solution. The shape and structure of prepared Fe3O4@UiO-66-NH2 were characterized, and the absorbed concentration of strontium was determined through inductively coupled plasma mass spectrometry. The results indicated that Fe3O4 and UiO-66-NH2 combined through chemical bonding. The experimental adsorption results for separation of Sr2+ in aqueous solution indicated that the adsorption of Sr2+ to Fe3O4@UiO-66-NH2 increased drastically from pH 11 to pH 13. The adsorption isotherm model indicated that the adsorption of Sr2+ conformed to the Freundlich isotherm model (R2 = 0.9919). The MMOF thus inherited the superior qualities of magnetic composites and metal organic frameworks, and can easily be separated under an external magnetic field. This MMOF thus has potential applications as a magnetic adsorbent for low level radionuclide 90Sr.
Adsorption
;
Ferrosoferric Oxide
;
chemistry
;
Hydrogen-Ion Concentration
;
Metal-Organic Frameworks
;
chemical synthesis
;
chemistry
;
Models, Theoretical
;
Nanoparticles
;
chemistry
;
Strontium
;
analysis
;
Surface Properties
;
Water Pollutants, Radioactive
;
analysis
;
Water Purification
;
methods
10.In-vivo Visualization of Iron Oxide Enhancement in Focal Pulmonary Inflammatory Lesions Using a Three-Dimensional Radial Gradient-Echo-Based Ultrashort Echo Time Sequence: A Preliminary Study
Soon Ho YOON ; Chanhee LEE ; Jinil PARK ; Jin Mo GOO ; Jang Yeon PARK
Korean Journal of Radiology 2018;19(1):153-157
OBJECTIVE: To preliminarily evaluate technical feasibility of a dual-echo ultrashort echo time (UTE) subtraction MR imaging by using concurrent dephasing and excitation (CODE) sequence for visualization of iron-oxide enhancement in focal inflammatory pulmonary lesions. MATERIALS AND METHODS: A UTE pulmonary MR imaging before and after the injection of clinically usable superparamagnetic iron-oxide nanoparticles, ferumoxytol, was conducted using CODE sequence with dual echo times of 0.14 ms for the first echo and 4.15 ms for the second echo on 3T scanner in two rabbits concurrently having granulomatous lung disease and lung cancer in separate lobes. A mean ratio of standardized signal intensity (SI) was calculated for comparison of granulomatous lesion and cancer at first echo, second echo, and subtracted images. Lesions were pathologically evaluated with Prussian blue and immunohistochemistry staining. RESULTS: Post-contrast subtracted CODE images visualized exclusive enhancement of iron oxide in granulomatous disease, but not in the cancer (mean ratio of SI, 2.15 ± 0.68 for granulomatous lesion versus 1.00 ± 0.07 for cancer; p value = 0.002). Prussian blue and corresponding anti-rabbit macrophage IgG-staining suggested an intracellular uptake of iron-oxide nanoparticles in macrophages of granulomatous lesions. CONCLUSION: Dual-echo UTE subtraction MR imaging using CODE sequence depicts an exclusive positive enhancement of iron-oxide nanoparticle in rabbits in focal granulomatous inflammatory lesions.
Ferrosoferric Oxide
;
Granuloma
;
Immunohistochemistry
;
Iron
;
Lung Diseases
;
Lung Neoplasms
;
Macrophages
;
Magnetic Resonance Imaging
;
Nanoparticles
;
Rabbits

Result Analysis
Print
Save
E-mail