1.Ethical issues and reflections on clinical research of radiopharmaceuticals
Yonglan HU ; Li WANG ; Feng JIANG ; Jiyin ZHOU ; Zhengjun CHEN ; Jie ZHANG ; Zengrui ZHANG
Chinese Medical Ethics 2025;38(2):254-260
Radiopharmaceuticals play an important role in the diagnosis and treatment of cardiovascular and cerebrovascular diseases, malignant tumors, central nervous system diseases, and other diseases. Under the urgent need for clinical diagnosis and treatment as well as medical development, the clinical research of radiopharmaceuticals has become a hotspot in international research. By analyzing the current situation of clinical research on radiopharmaceuticals in Europe, America, and China, the ethical issues of clinical research on radiopharmaceuticals were elaborated from four aspects, including lack of relevant laws and regulations, a higher risk of radiopharmaceuticals, dilemmas in ethical review, and insufficient radiation protection. Response principles and measures were proposed from four aspects, including improving regulations and policies, enhancing radiological protection for all parties involved in the research, strengthening ethical review, and reinforcing the training of relevant personnel, to enhance the quality and level of clinical research on radiopharmaceuticals.
2.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
3.The application strategies of non-uniform sampling in the structure elucidation of small molecule compounds—an instantiation using fuziline
Li-li ZHANG ; Ke ZHANG ; Jie LIU ; Chun-wang MENG ; Rui FENG ; Liang XIONG
Acta Pharmaceutica Sinica 2025;60(1):218-224
Two-dimensional nuclear magnetic resonance (2D NMR) is a widely used technique for structural analysis of small molecular compounds. It can obtain information about the hydrogen-hydrogen correlation, hydrogen-carbon single bond correlation, hydrogen-carbon remote correlation, and hydrogen-hydrogen spatial arrangement of compounds. Thus, 2D NMR has an irreplaceable role in the structure elucidation of small molecular products. However, the sample amount of trace components in phytochemical research is very low, and the traditional sampling method (uniform sampling) has problems of poor spectral quality and too long measure time. Increasing the number of scans results in several hours of the acquisition time for a single two-dimensional spectrum, which in turn causes strain on the NMR machine. The non-uniform sampling (NUS) technique can shorten the acquisition time to a large extent and not affect the quality of 2D NMR data, which greatly improves the efficiency of 2D NMR acquisition. In this paper, fuziline, a small molecular compound in the lateral roots of
4.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
5.Analysis of radiosensitivity indicators for radiation workers at a nuclear power plant
Nan MA ; Junchao FENG ; Yulong LIU ; Jie LI ; Yu GAO
Chinese Journal of Radiological Health 2025;34(2):264-269
Objective To analyze the health effects of long-term occupational exposure to ionizing radiation on radiation workers in a nuclear power plant, and to provide a scientific basis for their occupational health monitoring. Methods In 2023, 183 radiation workers in a nuclear power plant were subjected to the analysis of blood cell parameters such as mean red blood cell count, white blood cell count (WBC), lymphocyte count, and hemoglobin count, thyroid function indicators such as serum triiodothyronine, thyroxine, and thyrotropin, as well as the chromosomal aberration rate and micronucleus rate of the lymphocytes in the peripheral blood. Results The blood cell parameters, thyroid function indicators, chromosomal aberration rate, and micronucleus rate of these radiation workers in the nuclear power plant were within normal reference ranges. Comparison among radiation workers with different ages showed statistically significant differences in triiodothyronine (H = 6.98, P < 0.05) and micronucleus rate (H = 48.44, P < 0.05). Among the three groups of radiation workers with different working years, WBC was significantly different (χ2 = 3.87, P < 0.05), with the lowest WBC observed in radiation workers with ≥ 20 years of service. Thyroxine (χ2 = 4.01, P < 0.05) and micronucleus rate (H = 40.95, P < 0.05) also varied significantly among these three groups. Conclusion Thyroid triiodothyronine level and micronucleus rate were affected by age, while WBC, thyroid thyroxine level, and micronucleus rate were related to working years. Targeted health management should be carried out for radiation workers in nuclear power plants to improve the awareness of radiation protection and continuously enhance their health status.
6.Effects of Different Modes in Hypoxic Training on Metabolic Improvements in Obese Individuals: a Systematic Review With Meta-analysis on Randomized Controlled Trail
Jie-Ping WANG ; Xiao-Shi LI ; Ru-Wen WANG ; Yi-Yin ZHANG ; Feng-Zhi YU ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1587-1604
This paper aimed to systematically evaluate the effects of hypoxic training at different fraction of inspired oxygen (FiO2) on body composition, glucose metabolism, and lipid metabolism in obese individuals, and to determine the optimal oxygen concentration range to provide scientific evidence for personalized and precise hypoxic exercise prescriptions. A systematic search was conducted in the Cochrane Library, PubMed, Web of Science, Embase, and CNKI databases for randomized controlled trials and pre-post intervention studies published up to March 31, 2025, involving hypoxic training interventions in obese populations. Meta-analysis was performed using RevMan 5.4 software to assess the effects of different fraction of inspired oxygen (FiO2≤14% vs. FiO2>14%) on BMI, body fat percentage, waist circumference, fasting blood glucose, insulin, HOMA-IR, triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C), with subgroup analyses based on oxygen concentration. A total of 22 studies involving 292 participants were included. Meta-analysis showed that hypoxic training significantly reduced BMI (mean difference (MD)=-2.29,95%CI: -3.42 to -1.17, P<0.000 1), body fat percentage (MD=-2.32, 95%CI: -3.16 to -1.47, P<0.001), waist circumference (MD=-3.79, 95%CI: -6.73 to -0.85, P=0.01), fasting blood glucose (MD=-3.58, 95%CI: -6.23 to -0.93, P=0.008), insulin (MD=-1.60, 95%CI: -2.98 to -0.22, P=0.02), TG (MD=-0.18, 95%CI: -0.25 to -0.12, P<0.001), and LDL-C (MD=-0.25, 95%CI: -0.39 to -0.11, P=0.000 3). Greater improvements were observed under moderate hypoxic conditions with FiO2>14%. Changes in HOMA-IR (MD=-0.74, 95%CI: -1.52 to 0.04,P=0.06) and HDL-C (MD=-0.09, 95%CI: -0.21 to 0.02, P=0.11) were not statistically significant. Hypoxic training can significantly improve body composition, glucose metabolism, and lipid metabolism indicators in obese individuals, with greater benefits observed under moderate hypoxia (FiO>14%). As a key parameter in hypoxic exercise interventions, the precise setting of oxygen concentration is crucial for optimizing intervention outcomes.
7.Research progress on biological agents in the treatment of ankylosing spondylitis
Jie GAO ; Xinlan LIN ; Zhaoqian WANG ; Qingting ZHANG ; Jingjing LI ; Feng ZHANG
Journal of Pharmaceutical Practice and Service 2025;43(7):320-324
The pathogenesis of ankylosing spondylitis (AS) is usually insidious and has not been fully elucidated. Non-steroidal anti-inflammatory drugs (NSAIDs) and anti-rheumatic drugs (ARDs) are usually given to improve the condition. however, some patients still have poor results or adverse reactions from conventional treatments. Biological agents have significantly changed therapeutic strategies in the field of rheumatology since their clinical application was initiated and are gradually becoming the main therapeutic option for patients with AS. The current research progress on biologics in the treatment of AS in terms of the current treatment status, clinical problems, and solution strategies were reviewed, which could provide theoretical basis and reference with clinical value, and promote the precise treatment of AS in the future.
8.Feasibility study on automatic dicentric chromosome detection and dose estimation using an artificial intelligence-based chromosome image scanning and processing system
Junchao FENG ; Chang LIU ; Yulong LIU ; Jie LI ; Yu GAO
Chinese Journal of Radiological Health 2025;34(4):571-577
Objective To compare the results obtained from an artificial intelligence (AI)-based chromosome image scanning and processing system, the Metafer 4 chromosome scanning and analysis system, and manual analysis of dicentric chromosomes, and to explore the feasibility of applying AI technology for dicentric chromosome detection and biological dose estimation. Methods Healthy human elbow vein blood was collected and subjected to 60Co in vitro irradiation. Chromosome samples were prepared using conventional methods. The slides were scanned and automatically analyzed using the AI-based system and the Metafer 4 system. The results were manually analyzed and confirmed. Results The number of cells was comparable between the AI-based system and the Metafer 4 system. However, the scanning speed of the AI-based system was 4.5 seconds per image, which was significantly faster than the 7.3 seconds per image of the Metafer 4 system (t = −6.19, P < 0.05). At a confidence level of 0.7, the AI-based system demonstrated a true positive rate of 96.7% and a false positive rate of 6.5%, which were significantly better than the true positive rate (45.4%-54.5%) and false positive rate (22.2%-29.2%) of the Metafer 4 system (all P < 0.05). In the biological dose estimation, the deviation of the dose-response curve was ≤ ± 10% in the automatic analysis using the Metafer 4 system. Due to the use of the manual dose-response curve, the deviation of the AI-based System was ≤ ± 15%. However, there were no significant differences in the estimated doses when the two systems were compared with the manual analysis (P > 0.05). Conclusion Both the AI-based chromosome image scanning and processing system and the Metafer 4 chromosome scanning and analysis system greatly improved the analysis speed of chromosome aberrations. However, the scanning speed, true positive rate, and false positive rate of the AI-based system were superior to those of the Metafer 4 system. Therefore, the AI-based system is more suitable for rapid and high-throughput biological dose estimation in large-scale radiation accidents.
9. A network pharmacology-based approach to explore mechanism of kaempferol-7 -O -neohesperidoside against prostate cancer
Qiu-Ping ZHANG ; Zhi-Ping CHENG ; Wei XUE ; Qiao-Feng LI ; Hong-Wei GUO ; Qiu-Ping ZHANG ; Jie-Jun FU ; Hong-Wei GUO
Chinese Pharmacological Bulletin 2024;40(1):146-154
Aim To explore the effect of kaempferol-7- 0-neohesperidoside (K70N) against prostate cancer (PCa) and the underlying mechanism. Methods The effect of K70N on the proliferation of PCa cell lines PC3, DU145, C4-2 and LNCaP was detected using CCK8 assay. The effect of K70N on migration ability of DU145 cells was determined by wound healing assay. The targets of K70N and PCa were screened from SuperPred and other databases. The common targets both related to K70N and PCa were obtained from the Venny online platform, a protein-protein interaction network (PPI) was constructed by the String and Cyto- scape. Meanwhile, the GO and KEGG functional enrichment were analyzed by David database. Then, a "drug-target-disease-pathway" network model was constructed. Cell cycle of PCa cells treated with K70N was analyzed by flow cytometry. The expressions of cycle-associated proteins including Skp2, p27 and p21 protein were detected by Western blot. Molecular docking between Skp2 and K70N was conducted by Sybyl X2. 0. Results K70N significantly inhibited the proliferation and migration of PCa cells. A total number of 34 drug-disease intersection targets were screened. The String results showed that Skp2 and p27, among the common targets, were the key targets of K70N for PCa treatment. Furthermore, GO and KEGG functional en-richment indicated that the mechanism was mainly related to the cell cycle. Flow cytometry showed that K70N treatment induced cell cycle arrest at the S phase. Compared with the control group, the protein expression level of Skp2 was significantly down-regulated, while the protein expression levels of p27 and p21 were up-regulated. The network molecular docking indicated that the ligand K70N had a good binding ability with the receptor Skp2. Conclusions K70N could inhibit the proliferation and migration of PCa cells, block the cell cycle in the S phase, which may be related to the regulation of cell cycle through the Skp2- p27/p21 signaling pathway.
10. Mechanism of Yi-xin-yin oral liquid according to homotherapy for heteropathy theory based on UHPLC-Q-TOF/MS combined with network pharmacology and molecular docking techniques
Yejian WANG ; Juan LI ; Weidong CHEN ; Feng ZHANG ; Yejian WANG ; Tao PANG ; Jie GAO ; Wansheng CHEN ; Feng ZHANG ; Guangyang JIAO ; Wansheng CHEN ; Nan WENG
Chinese Journal of Clinical Pharmacology and Therapeutics 2024;29(1):11-25
AIM: To predict the core targets and related signaling pathways of Yi-xin-yin oral liquid for the treatment of arrhythmia, heart failure and myocarditis based on UHPLC-Q-TOF/MS, network pharmacology, molecular docking methods, cell experiments, according to the“homotherapy for heteropathy”theory in traditional Chinese medicine. METHODS: UHPLC-Q-TOF / MS was used to analyze and identify the chemical composition of Yi-xin-yin oral liquid Extract and the blood-absorbing components of rats oral administrated with Yi-xin-yin oral liquid extract, which compounds were applied in the databases searching for the potential targets (TCMSP, SwissTargetPrediction) and disease targets (OMIM, Genecard). Venn diagram was used for target intersection, and the subsequent protein-protein interaction network obtained core targets by STRING11.5 database, and then construct a "disease-component-target" network by cytoscape3.9.0. Finally, DAVID database was used to analysis GO function and KEGG enrichment analysis of core targets, and molecular docking validation was performed using Autodock vina software. And, validated with H9c2 cells for potential active ingredients and targets. RESULTS: A total of 156 compounds were identified from Yi - xin-yin Oral Liquid extract; 34 compounds were identified from rat serum, including 6-gin-gerol, isoliquiritigenin, glycyrrhizic acid and other compounds, and 139 intersecting targets were obtained. The KEGG pathway enrichment analysis mainly involved the TNF signaling pathway, IL-17 signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway and so on. The TNF and IL-6 targets were selected for molecular docking with the main compounds, and the docking results were good (less than -5 kcal/mol). In vitro cellular experiments have shown that Yi-xin-yin oral liquid can exert therapeutic effects by regulating TNF and IL-6. CONCLUSION: The main potential active ingredients of Yi-xin-yin oral liquid may be isoliquiritigenin, glycyrrhetinic acid, calycosin-7-glucoside, salvianolic acid B, and 6-gingerol, which mainly act on TNF, IL-6 and other targets to regulate specific signaling pathways and exert therapeutic effects.

Result Analysis
Print
Save
E-mail