1.Resveratrol activates extracellular-regulated protein kinase 5 signaling protein to promote proliferation of mouse MC3T3-E1 cells
Yongkang NIU ; Zhiwei FENG ; Yaobin WANG ; Zhongcheng LIU ; Dejian XIANG ; Xiaoyuan LIANG ; Zhi YI ; Hongwei ZHAN ; Bin GENG ; Yayi XIA
Chinese Journal of Tissue Engineering Research 2025;29(5):908-916
BACKGROUND:The extracellular-regulated protein kinase 5(ERK5)signaling protein is essential for the survival of organisms,and resveratrol can promote osteoblast proliferation through various pathways.However,whether resveratrol can regulate osteoblast function through the ERK5 signaling protein needs further verification. OBJECTIVE:To explore the regulatory effect of ERK5 on the proliferation of MC3T3-E1 cells and related secreted proteins,and to further verify whether resveratrol can complete the above process by activating ERK5. METHODS:Mouse MC3T3-E1 preosteoblasts were treated with complete culture medium,XMD8-92(an ERK5 inhibitor),epidermal growth factor(an ERK5 activator),resveratrol alone,XMD8-92+EGF,and resveratrol+XMD8-92,respectively.Western blot assay was used to detect the expression of ERK5 and p-ERK5 proteins,proliferation-related proteins Cyclin D1,CDK4 and PCNA,and osteoblast-secreted proteins osteoprotegerin and receptor activator of nuclear factor-κB ligand in MC3T3-E1 cells of each group.The fluorescence intensity of ERK5,osteoprotegerin and receptor activator of nuclear factor-κB ligand in each group was detected by cell immunofluorescence staining,and cell proliferation was detected by EdU staining,respectively.The appropriate concentration and time of resveratrol intervention in MC3T3-E1 cells were determined by cell morphology observation and cell counting kit-8 assay. RESULTS AND CONCLUSION:The activation of ERK5 signaling protein could effectively promote the proliferation of MC3T3-E1 cells,up-regulate the osteoprotegerin/receptor activator of nuclear factor-κB ligand ratio.The appropriate concentration and time for resveratrol intervention in MC3T3-E1 cells was 5 μmol/L and 24 hours,respectively.Resveratrol could activate ERK5 signaling protein,thereby promoting osteoblast proliferation and up-regulating the osteoprotegerin/RANKL ratio.All these results indicate that resveratrol can promote the proliferation of MC3T3-E1 cells and up-regulate the osteoprotegerin/RANKL ratio by activating the ERK5 signaling protein.
2.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
3.Preparation modification strategies for clinical treatment drugs of Parkinson's disease
Meng-jiao HE ; Yi-fang XIAO ; Xiang-an-ni KONG ; Zhi-hao LIU ; Xiao-guang WANG ; Hao FENG ; Jia-sheng TU ; Qian CHEN ; Chun-meng SUN
Acta Pharmaceutica Sinica 2024;59(3):574-580
Parkinson's disease (PD) is a chronic neurodegenerative disease. At present, levodopa and other drugs are mainly used for dopamine supplementation therapy. However, the absorption of levodopa in the gastrointestinal tract is unstable and its half-life is short, and long-term use of levodopa will lead to the end-of-dose deterioration, dyskinesia, the "ON-OFF" phenomenon and other symptoms. Therefore, new preparations need to be developed to improve drug efficacy, reduce side effects or improve compliance of patients. Based on the above clinical needs, this review briefly introduced the preparation modification strategies for the treatment of PD through case analysis, in order to provide references for the research and development of related preparations.
4.Detection of Amantadine by Label-free Fluorescence Method Based on Truncated Aptamer and Molybdenum Disulfide Nanosheet Signal Enhancement Strategy
Yi-Feng LAN ; Bo-Ya HOU ; Zhi-Wen WEI ; Wen LIU ; Chao ZHANG ; Ya-Hui ZUO ; Ke-Ming YUN
Chinese Journal of Analytical Chemistry 2024;52(2):208-219,中插4-中插7
Amantadine(AMD)residue can accumulate in organisms through the food chain and cause serious harm to human body.AMD can specifically bind to AMD specific aptamer and cause its conformation to change from a random single strand to a stem-loop structure.To avoid the influence of excess nucleotides on binding of aptamer to AMD,the truncation of the AMD original aptamer J was optimized by retaining an appropriate stem-loop structure,and a new type of truncation aptamers was developed in this work.By comparing the truncated aptamer with the original aptamer,it was found that the truncated aptamer J-7 had better affinity and specificity with AMD.The detection limit of AMD was 0.11 ng/mL by using J-7 as specific recognition element and molybdenum disulfide nanosheet(MoS2Ns)as signal amplification element.The developed method base on truncated aptamer J-7 was used for detection of AMD in milk,yogurt and SD rat serum samples for the first time with recoveries of 86.6%-108.2%.This study provided a reference for truncating other long sequence aptamers and provided a more sensitive detection method for monitoring AMD residues in food.
5.Research progress on the mechanism of metachronous gastric cancer after endoscopic submucosal dissection and Helicobacter pylori eradication in early gastric cancer
Xin-Yue HU ; Bin WANG ; Tao WANG ; Kai-Jun LIU ; Liang-Zhi WEN ; Dong-Feng CHEN
Medical Journal of Chinese People's Liberation Army 2024;49(1):108-114
Helicobacter pylori(HP)infection is a Class Ⅰ carcinogen in gastric cancer,closely related to the occurrence of gastric cancer.Many studies have shown that HP eradication has a preventive effect on gastric cancer.However,2.7%-6.1%of patients with early gastric cancer who have been eradicated after endoscopic submucosal dissection(ESD)can still develop metachronous gastric cancer(MGC),and the mechanism of its occurrence is still unclear.In this review,the atrophy of gastric mucosa and intestinal metaplasia cannot be completely reversed after HP eradication,the excessive proliferation of gastric mucosa epithelial cells,the accumulation of genetic abnormalities,the homeostasis imbalance of the epigenetic group,changes in immune microenvironment,the abnormality of stem cells in gastric mucosa,chromatin accessibility,and changes in chromosome remodeling were discussed in the mechanism of carcinogenesis caused by the above molecular changes after ESD and HP eradication in early gastric cancer.
6.A Rapid Non-invasive Method for Skin Tumor Tissue Early Detection Based on Bioimpedance Spectroscopy
Jun-Wen PENG ; Song-Pei HU ; Zhi-Yang HONG ; Li-Li WANG ; Kai LIU ; Jia-Feng YAO
Progress in Biochemistry and Biophysics 2024;51(5):1161-1173
ObjectiveIn recent years, with the intensification of environmental issues and the depletion of ozone layer, incidence of skin tumors has also significantly increased, becoming one of the major threats to people’s lives and health. However, due to factors such as high concealment in the early stage of skin tumors, unclear symptoms, and large human skin area, most cases are detected in the middle to late stage. Early detection plays a crucial role in postoperative survival of skin tumors, which can significantly improve the treatment and survival rates of patients. We proposed a rapid non-invasive electrical impedance detection method for early screening of skin tumors based on bioimpedance spectroscopy (BIS) technology. MethodsFirstly, we have established a complete skin stratification model, including stratum corneum, epidermis, dermis, and subcutaneous tissue. And the numerical analysis method was used to investigate the effect of dehydrated and dry skin stratum corneum on contact impedance in BIS measurement. Secondly, differentiation effect of different diameter skin tumor tissues was studied using a skin model after removing the stratum corneum. Then, in order to demonstrate that BIS technology can be used for detecting the microinvasion stage of skin tumors, we conducted a simulation study on the differentiation effect of skin tumors under different infiltration depths. Finally, in order to verify that the designed BIS detection system can distinguish between tumor microinvasion periods, we conducted tumor invasion experiments using hydrogel treated pig skin tissue. ResultsThe simulation results show that a dry and high impedance stratum corneum will bring about huge contact impedance, which will lead to larger measurement errors and affect the accuracy of measurement results. We extracted the core evaluation parameter of relaxed imaginary impedance (Zimag-relax) from the simulation results of the skin tumor model. When the tumor radius (Rtumor) and invasion depth (h)>1.5 mm, the designed BIS detection system can distinguish between tumor tissue and normal tissue. At the same time, in order to evaluate the degree of canceration in skin tissue, the degree of tissue lesion (εworse) is defined by the relaxed imaginary impedance (Zimag-relax) of normal and tumor tissue (εworse is the percentage change in virtual impedance of tumor tissue relative to that of normal tissue), and we fitted a Depth-Zimag-relax curve using relaxation imaginary impedance data at different infiltration depths, which can be applied to quickly determine the infiltration depth of skin tumors after being supplemented with a large amount of clinical data in the future. The experimental results proved that when εworse=0.492 0, BIS could identify microinvasive tumor tissue, and the fitting curve correction coefficient of determination was 0.946 8, with good fitting effect. The simulation using pig skin tissue correlated the results of real human skin simulation with the experimental results of pig skin tissue, proving the reliability of this study, and laying the foundation for further clinical research in the future. ConclusionOur proposed BIS method has the advantages of fast, real-time, and non-invasive detection, as well as high sensitivity to skin tumors, which can be identified during the stage of tumor microinvasion.
7.Glycyrrhizic Acid Showed Therapeutic Effects on Severe Pulmonary Damages in Mice Induced by Pneumonia Virus of Mice Infection
Yun LIU ; Tingting FENG ; Wei TONG ; Zhi GUO ; Xia LI ; Qi KONG ; Zhiguang XIANG
Laboratory Animal and Comparative Medicine 2024;44(3):251-258
Objective In this study,inbred BALB/c mice infected with the pneumonia virus of mice(PVM)were used to establish an animal model of viral pneumonia,and the changes in the pro-inflammatory alarmin molecule,high mobility group box 1 protein(HMGB1),during PVM infection were observed,as well as the in vivo intervention effects of the HMGB1 inhibitor,glycyrrhizic acid(GA),on PVM-induced lung injury.Methods Three-week-old female BALB/c mice were randomly divided into three groups,each consisting of 6 mice.One group,uninfected by PVM,served as the control group(Control).The other two groups were inoculated intranasally with PVM at a dose of 1×104 50%tissue culture infective dose(TCID50)/25 μL,and subsequently treated with GA saline solution(GA group)or plain saline solution(normal saline,NS group)via gavage for 15 consecutive days.During this period,changes in body weight and appearance were monitored in each group.At the end of the experiment,lung tissue samples were collected from all groups.The distribution of PVM and HMGB1 proteins in the lung tissues was analyzed using hematoxylin-eosin staining and immunohistochemistry.The expression levels of HMGB1 and its Toll-like receptor 4(TLR-4),advanced glycosylation end-product-specific receptor(AGER),and inflammatory cytokines such as interleukin(IL)-1β,IL-2,and tumor necrosis factor-α(TNF-α)in lung tissues of mice were measured using real time fluorescence quantitative PCR.Results Compared with the Control group,the NS group showed a significant weight loss after 6 days(P<0.05).Histopathological tests revealed pronounced inflammatory lesions in their lungs.Immunohistochemistry results showed that HMGB1 was released from the nucleus to the cytoplasm,and real time fluorescence quantitative PCR results indicated that the expression levels of HMGB1,IL-1β,and IL-2 were significantly upregulated(P<0.05).In the GA group,there was no significant change in the clinical symptoms or body weight.However,compared with the NS group,the pathological damages of lung tissues in the GA group were significantly reduced,and the expression levels of HMGB1,IL-1 β,IL-2,and interferon-γ(IFN-γ)in lung tissues were also significantly decreased(P<0.05),although the expression level of AGER was significantly increased(P<0.05).Conclusion PVM infection can cause significant inflammatory pathological lung damages in mice,and GA can effectively alleviate the damages.Its therapeutic effect may be related to the activation of HMGB1 signaling pathway.
8.Expert consensus on clinical application of 177Lu-prostate specific membrane antigen radio-ligand therapy in prostate cancer
Guobing LIU ; Weihai ZHUO ; Yushen GU ; Zhi YANG ; Yue CHEN ; Wei FAN ; Jianming GUO ; Jian TAN ; Xiaohua ZHU ; Li HUO ; Xiaoli LAN ; Biao LI ; Weibing MIAO ; Shaoli SONG ; Hao XU ; Rong TIAN ; Quanyong LUO ; Feng WANG ; Xuemei WANG ; Aimin YANG ; Dong DAI ; Zhiyong DENG ; Jinhua ZHAO ; Xiaoliang CHEN ; Yan FAN ; Zairong GAO ; Xingmin HAN ; Ningyi JIANG ; Anren KUANG ; Yansong LIN ; Fugeng LIU ; Cen LOU ; Xinhui SU ; Lijun TANG ; Hui WANG ; Xinlu WANG ; Fuzhou YANG ; Hui YANG ; Xinming ZHAO ; Bo YANG ; Xiaodong HUANG ; Jiliang CHEN ; Sijin LI ; Jing WANG ; Yaming LI ; Hongcheng SHI
Chinese Journal of Clinical Medicine 2024;31(5):844-850,封3
177Lu-prostate specific membrane antigen(PSMA)radio-ligand therapy has been approved abroad for advanced prostate cancer and has been in several clinical trials in China.Based on domestic clinical practice and experimental data and referred to international experience and viewpoints,the expert group forms a consensus on the clinical application of 177Lu-PSMA radio-ligand therapy in prostate cancer to guide clinical practice.
9.Calcitonin gene-related peptide inhibits neuronal apoptosis in heatstroke rats via PKA/p-CREB pathway
Jie ZHU ; Ya-Hong CHEN ; Jing-Jing JI ; Cheng-Xiang LU ; Zhi-Feng LIU
Chinese Journal of Traumatology 2024;27(1):18-26
Purpose::The incidence of heatstroke (HS) is not particularly high; however, once it occurs, the consequences are serious. It is reported that calcitonin gene-related peptide (CGRP) is protective against brain injury in HS rats, but detailed molecular mechanisms need to be further investigated. In this study, we further explored whether CGRP inhibited neuronal apoptosis in HS rats via protein kinase A (PKA)/p-cAMP response element-binding protein (p-CREB) pathway.Methods::We established a HS rat model in a pre-warmed artificial climate chamber with a temperature of (35.5 ± 0.5) °C and a relative humidity of 60% ± 5%. Heatstress was stopped once core body temperature reaches above 41 °C. A total of 25 rats were randomly divided into 5 groups with 5 animals each: control group, HS group, HS+CGRP group, HS+CGRP antagonist (CGRP8-37) group, and HS+CGRP+PKA/p-CREB pathway blocker (H89) group. A bolus injection of CGRP was administered to each rat in HS+CGRP group, CGRP8-37 (antagonist of CGRP) in HS+CGRP8-37 group, and CGRP with H89 in HS+CGRP+H89 group. Electroencephalograms were recorded and the serum concentration of S100B, neuron-specific enolase (NSE), neuron apoptosis, activated caspase-3 and CGRP expression, as well as pathological morphology of brain tissue were detected at 2 h, 6 h, and 24 h after HS in vivo. The expression of PKA, p-CREB, and Bcl-2 in rat neurons were also detected at 2 h after HS in vitro. Exogenous CGRP, CGRP8-37, or H89 were used to determine whether CGRP plays a protective role in brain injury via PKA/p-CREB pathway. The unpaired t-test was used between the 2 samples, and the mean ± SD was used for multiple samples. Double-tailed p < 0.05 was considered statistically significant. Results::Electroencephalogram showed significant alteration of θ (54.50 ± 11.51 vs. 31.30 ± 8.71, F = 6.790, p = 0.005) and α wave (16.60 ± 3.21 vs. 35.40 ± 11.28, F = 4.549, p = 0.020) in HS group compared to the control group 2 h after HS. The results of triphosphate gap terminal labeling (TUNEL) showed that the neuronal apoptosis of HS rats was increased in the cortex (9.67 ± 3.16 vs. 1.80 ± 1.10, F= 11.002, p = 0.001) and hippocampus (15.73 ± 8.92 vs. 2.00 ± 1.00, F = 4.089, p = 0.028), the expression of activated caspase-3 was increased in the cortex (61.76 ± 25.13 vs. 19.57 ± 17.88, F = 5.695, p = 0.009) and hippocampus (58.60 ± 23.30 vs. 17.80 ± 17.62, F = 4.628, p = 0.019); meanwhile the expression of serum NSE (5.77 ± 1.78 vs. 2.35 ± 0.56, F = 5.174, p = 0.013) and S100B (2.86 ± 0.69 vs. 1.35 ± 0.34, F= 10.982, p = 0.001) were increased significantly under HS. Exogenous CGRP decreased the concentrations of NSE and S100B, and activated the expression of caspase-3 (0.41 ± 0.09 vs. 0.23 ± 0.04, F = 32.387, p < 0.001) under HS; while CGRP8-37 increased NSE (3.99 ± 0.47 vs. 2.40 ± 0.50, F = 11.991, p = 0.000) and S100B (2.19 ± 0.43 vs. 1.42 ± 0.30, F = 4.078, p = 0.025), and activated the expression caspase-3 (0.79 ± 0.10 vs. 0.23 ± 0.04, F= 32.387, p < 0.001). For the cell experiment, CGRP increased Bcl-2 (2.01 ± 0.73 vs. 2.15 ± 0.74, F= 8.993, p < 0.001), PKA (0.88 ± 0.08 vs. 0.37 ± 0.14, F= 20.370, p < 0.001), and p-CREB (0.87 ± 0.13 vs. 0.29 ± 0.10, F= 16.759, p < 0.001) levels; while H89, a blocker of the PKA/p-CREB pathway reversed the expression. Conclusions::CGRP can protect against HS-induced neuron apoptosis via PKA/p-CREB pathway and reduce activation of caspase-3 by regulating Bcl-2. Thus CGRP may be a new target for the treatment of brain injury in HS.
10.Clinical features and initial outcomes in elderly patients with idiopathic membranous nephropathy
Jinxiu LIANG ; Fangxiao XIA ; Wenke HAO ; Wenxue HU ; Yanhua WU ; Feng YU ; Zhi ZHAO ; Wei LIU
Chinese Journal of Geriatrics 2024;43(2):168-174
Objective:The purpose of this study was to examine the clinical features and initial treatment outcomes of elderly individuals with idiopathic membranous nephropathy.Methods:This study retrospectively analyzed the clinical characteristics and therapeutic effect of hospitalized patients aged 60 years or older with renal-biopsy-proven idiopathic membranous nephropathy for at least one year.Results:This study enrolled a total of 91 elderly patients with IMN, consisting of 51 males(56.0%)and 40 females(44.0%). The median age of the patients was 67 years.The urinary protein creatinine ratio(uPCR)and urinary albumin creatinine ratio(uACR)of the patients were 4 454.3 mg/g and 2 258.5 mg/g, respectively.The median 24-hour urinary protein and urinary albumin levels were 5 098.2 mg/24 h and 2 800.6 mg/24 h, respectively.The average estimated glomerular filtration rate(eGFR)was(60.5±20.4)ml·min -1·1.73 m -2.Out of the total of 61 patients, 67.0% achieved remission, including complete and partial remission, within a year of renal biopsy.The levels of uPCR and uACR were significantly higher in the non-remission group compared to the remission group(5 462.5 vs.2 271.1 mg/g, P<0.001; 2 774.4 vs.1 320.0 mg/g, P=0.001). Additionally, the levels of 24h urinary protein and urinary albumin were significantly higher in the non-remission group compared to the remission group(6 526.4 vs.3 210.4 mg/g, P=0.002; 3 067.7 vs.2 102.4 mg/g, P=0.007). The remission group had a higher proportion of patients receiving immunosuppressive therapy(85.2% vs.33.3%, P<0.001). The remission rates were higher in patients treated with glucocorticoid combined with cyclophosphamide, glucocorticoid combined with calcineurin inhibitors, or glucocorticoid combined with mycophenolate mofetil compared to those receiving conservative treatment(88.2% vs.31.0%, P=0.001; 80.0% vs.31.0%, P<0.001; 100.0% vs.31.0%, P=0.007). There was no significant difference in remission rate between the three immunosuppressive therapy groups( P>0.05). However, upon further analysis, it was found that the levels of uPCR, uACR, and serum cystatin C(CysC)were higher in the immunosuppressive therapy groups compared to conservative treatment.Additionally, serum total protein and albumin were lower in the immunosuppressive therapy groups, and these differences were statistically significant( P<0.05). Conclusions:The majority of elderly patients diagnosed with IMN have multiple comorbidities.For those at high risk with elevated urinary protein levels, early initiation of immunosuppressive therapy may lead to a higher initial urinary protein remission rate.Therefore, it is advisable to develop individualized treatment plans for elderly patients with IMN based on their clinical characteristics, as well as the risks and benefits associated with immunosuppressive therapy.

Result Analysis
Print
Save
E-mail