1.Construction of a predictive model for poorly differentiated adenocarcinoma in pulmonary nodules using CT combined with tumor markers
Jie JIANG ; Feng LIU ; Bo WANG ; Qin WANG ; Jian ZHONG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):73-79
Objective To establish and internally validate a predictive model for poorly differentiated adenocarcinoma based on CT imaging and tumor marker results. Methods Patients with solid and partially solid lung nodules who underwent lung nodule surgery at the Department of Thoracic Surgery, the Affiliated Brain Hospital of Nanjing Medical University in 2023 were selected and randomly divided into a training set and a validation set at a ratio of 7:3. Patients' CT features, including average density value, maximum diameter, pleural indentation sign, and bronchial inflation sign, as well as patient tumor marker results, were collected. Based on postoperative pathological results, patients were divided into a poorly differentiated adenocarcinoma group and a non-poorly differentiated adenocarcinoma group. Univariate analysis and logistic regression analysis were performed on the training set to establish the predictive model. The receiver operating characteristic (ROC) curve was used to evaluate the model's discriminability, the calibration curve to assess the model's consistency, and the decision curve to evaluate the clinical value of the model, which was then validated in the validation set. Results A total of 299 patients were included, with 103 males and 196 females, with a median age of 57.00 (51.00, 67.25) years. There were 211 patients in the training set and 88 patients in the validation set. Multivariate analysis showed that carcinoembryonic antigen (CEA) value [OR=1.476, 95%CI (1.184, 1.983), P=0.002], cytokeratin 19 fragment antigen (CYFRA21-1) value [OR=1.388, 95%CI (1.084, 1.993), P=0.035], maximum tumor diameter [OR=6.233, 95%CI (1.069, 15.415), P=0.017], and average density [OR=1.083, 95%CI (1.020, 1.194), P=0.040] were independent risk factors for solid and partially solid lung nodules as poorly differentiated adenocarcinoma. Based on this, a predictive model was constructed with an area under the ROC curve of 0.896 [95%CI (0.810, 0.982)], a maximum Youden index corresponding cut-off value of 0.103, sensitivity of 0.750, and specificity of 0.936. Using the Bootstrap method for 1000 samplings, the calibration curve predicted probability was consistent with actual risk. Decision curve analysis indicated positive benefits across all prediction probabilities, demonstrating good clinical value. Conclusion For patients with solid and partially solid lung nodules, preoperative use of CT to measure tumor average density value and maximum diameter, combined with tumor markers CEA and CYFRA21-1 values, can effectively predict whether it is poorly differentiated adenocarcinoma, allowing for early intervention.
2.Optimization of drug management model for investigator-initiated trial with benchmarking analysis
Yufei XI ; Tianxiao WANG ; Xue ZHANG ; Yingzhuo DING ; Li YAN ; Feng JIANG ; Xiangui HE ; Jiannan HUANG ; Qin LI
China Pharmacy 2025;36(3):280-284
OBJECTIVE To optimize the management model of drugs used in investigator-initiated trial (IIT). METHODS With benchmarking analysis, based on the practical work experience of a tertiary specialized hospital in the field of IIT drug management in Shanghai, a thorough review was conducted, involving relevant laws, regulations, and academic literature to establish benchmark criteria and the evaluation standards. Starting from the initiation of IIT projects, a detailed comparative analysis of key processes was carried out, such as the receipt, storage, distribution, use and recycling of drugs for trial. The deficiencies in the current management of IIT drugs were reviewed in detail and a series of optimization suggestions were put forward. RESULTS It was found that the authorized records of drug management were missing, the training before project implementation was insufficient, and the records of receipt and acceptance of IIT drugs were incomplete. In light of these existing problems, improvement measures were put forward, including strengthening the training of drug administrators and stipulating that only drug administrators with pharmacist qualifications be eligible to inspect and accept drugs, etc. The related systems were improved, and 17 key points of quality control for the management of IIT drugs were developed. CONCLUSIONS A preliminary IIT drug management system for medical institutions has been established, which helps to improve the institutional X2023076) framework of medical institutions in this field.
3.Inhibition of HDAC3 Promotes Psoriasis Development in Mice Through Regulating Th17
Fan XU ; Xin-Rui ZHANG ; Yang-Chen XIA ; Wen-Ting LI ; Hao CHEN ; An-Qi QIN ; Ai-Hong ZHANG ; Yi-Ran ZHU ; Feng TIAN ; Quan-Hui ZHENG
Progress in Biochemistry and Biophysics 2025;52(4):1008-1017
ObjectiveTo investigate the influence of histone deacetylase 3 (HDAC3) on the occurrence, development of psoriasis-like inflammation in mice, and the relative immune mechanisms. MethodsHealthy C57BL/6 mice aged 6-8 weeks were selected and randomly divided into 3 groups: control group (Control), psoriasis model group (IMQ), and HDAC3 inhibitor RGFP966-treated psoriasis model group (IMQ+RGFP966). One day prior to the experiment, the back hair of the mice was shaved. After a one-day stabilization period, the mice in Control group was treated with an equal amount of vaseline, while the mice in IMQ group was treated with imiquimod (62.5 mg/d) applied topically on the back to establish a psoriasis-like inflammation model. The mice in IMQ+RGFP966 group received intervention with a high dose of the HDAC3-selective inhibitor RGFP966 (30 mg/kg) based on the psoriasis-like model. All groups were treated continuously for 5 d, during which psoriasis-like inflammation symptoms (scaling, erythema, skin thickness), body weight, and mental status were observed and recorded, with photographs taken for documentation. After euthanasia, hematoxylin-eosin (HE) staining was used to assess the effect of RGFP966 on the skin tissue structure of the mice, and skin thickness was measured. The mRNA and protein expression levels of HDAC3 in skin tissues were detected using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB), respectively. Flow cytometry was employed to analyze neutrophils in peripheral blood and lymph nodes, CD4+ T lymphocytes, CD8+ T lymphocytes in peripheral blood, and IL-17A secretion by peripheral blood CD4+ T lymphocytes. Additionally, spleen CD4+ T lymphocyte expression of HDAC3, CCR6, CCR8, and IL-17A secretion levels were analyzed. Immunohistochemistry was used to detect the localization and expression levels of HDAC3, IL-17A, and IL-10 in skin tissues. ResultsCompared with the Control group, the IMQ group exhibited significant psoriasis-like inflammation, characterized by erythema, scaling, and skin wrinkling. Compared with the IMQ group, RGFP966 exacerbated psoriasis-like inflammatory symptoms, leading to increased hyperkeratosis. The psoriasis area and severity index (PASI) skin symptom scores were higher in the IMQ group than those in the Control group, and the scores were further elevated in the IMQ+RGFP966 group compared to the IMQ group. Skin thickness measurements showed a trend of IMQ+RGFP966>IMQ>Control. The numbers of neutrophils in the blood and lymph nodes increased sequentially in the Control, IMQ, and IMQ+RGFP966 groups, with a similar trend observed for CD4+ and CD8+ T lymphocytes in the blood. In skin tissues, compared with the Control group, the mRNA and protein levels of HDAC3 decreased in the IMQ group, but RGFP966 did not further reduce these expressions. HDAC3 was primarily located in the nucleus. Compared with the Control group, the nuclear HDAC3 content decreased in the skin tissues of the IMQ group, and RGFP966 further reduced nuclear HDAC3. Compared with the Control and IMQ groups, RGFP966 treatment decreased HDAC3 expression in splenic CD4+ and CD8+ T cells. RGFP966 treatment increased the expression of CCR6 and CCR8 in splenic CD4+ T cells and enhanced IL-17A secretion by peripheral blood and splenic CD4+ T lymphocytes. Additionally, compared with the IMQ group, RGFP966 reduced IL-10 protein levels and upregulated IL-17A expression in skin tissues. ConclusionRGFP966 exacerbates psoriatic-like inflammatory responses by inhibiting HDAC3, increasing the secretion of the cytokine IL-17A, and upregulating the expression of chemokines CCR8 and CCR6.
4.Setup Error and Its Influencing Factors in Radiotherapy for Spinal Metastasis
Wenhua QIN ; Xin FENG ; Zengzhou WANG ; Shangnan CHU ; Hong WANG ; Shiyu WU ; Cheng CHEN ; Fukui HUAN ; Bin LIANG ; Tao ZHANG
Cancer Research on Prevention and Treatment 2025;52(5):400-404
Objective To investigate the setup error in patients with spinal bone metastasis who underwent radiotherapy under the guidance of kilovoltage cone-beam CT (KV-CBCT). Methods A total of 118 patients with spinal metastasis who underwent radiotherapy, including 17 cases of cervical spine, 62 cases of thoracic spine, and 39 cases of lumbar spine, were collected. KV-CBCT scans were performed using the linear accelerators from Elekta and Varian’s EDGE system. CBCT images were registered with reference CT images in the bone window mode. A total of 973 data were collected, and 3D linear errors were recorded. Results The patients with spinal bone metastasis were grouped by site, height, weight, and BMI. The P value of the patients grouped only by site was P<0.05, which was statistically significant. Conclusion When grouped by site in the 3D direction, the positioning effect of cervical spine is better than that of thoracic and lumbar spine. The positioning effect of the thoracic spine is better in the head and foot direction but worse in the left and right direction compared with that of the lumbar spine. Instead of extending or narrowing the margin according to the BMI of patients with spinal metastasis, the margin must be changed according to the site of spinal bone metastasis.
5.Effects of understory environmental factors on understory planting of medicinal plants.
Ding-Mei WEN ; Hong-Biao ZHANG ; Feng-Yuan QIN ; Chao-Qun XU ; Dou-Dou LI ; Bao-Lin GUO
China Journal of Chinese Materia Medica 2025;50(5):1164-1171
Understory planting of medicinal plants is a new planting mode that connects Chinese herbal medicine(CHM) with forest resources.The complex and variable understory environmental factors will inevitably affect the yield and quality of understory CHM.This research summarized the research progress on understory planting of medicinal plants based on forest types and environmental factors within the forest from the perspectives of understory light, air temperature and humidity, soil characteristics, and the interaction between crops within the forest.The results showed that the complex and variable light, temperature and humidity, and soil factors(such as fertility, acidity and alkalinity, and microorganisms) under the forest could affect the yield and quality of medicinal plants to varying degrees through physiological activities such as photosynthesis and respiration, resulting in a significant increase or decrease in yield and quality compared to open field cultivation.In addition, the competition or mutual benefit between different crops within the forest could lead to differences in the yield and quality of understory medicinal plants compared to open field cultivation.A reasonable combination of planting could achieve resource sharing and complementary advantages.Therefore, conducting systematic research on the effects of understory environmental factors on the yield and content of medicinal plants with different growth and development characteristics can provide theoretical guidance and technical references for formulating comprehensive strategies for understory planting of medicinal plants, such as selecting suitable medicinal plant varieties, optimizing planting density, and conducting reasonable forest management, thus contributing to the sustainable development and ecological protection of CHM.
Plants, Medicinal/growth & development*
;
Forests
;
Soil/chemistry*
;
Environment
;
Ecosystem
;
Temperature
6.Fresh Rehmanniae Radix regulates cholesterol metabolism disorder in mice fed with high-fat and high-cholesterol diet via FXR-mediated bile acid reabsorption.
Xin-Yu MENG ; Yan CHEN ; Li-Qin ZHAO ; Qing-Pu LIU ; Yong-Huan JIN ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2025;50(6):1670-1679
This study aims to investigate the potential effect of the water extract of fresh Rehmanniae Radix on hypercholesterolemia in mice that was induced by a high-fat and high-cholesterol diet and explore its possible mechanism from bile acid reabsorption. Male C57BL/6 mice were randomly assigned into the following groups: control, model, low-and high-dose(4 and 8 g·kg~(-1), respectively) fresh Rehmanniae Radix, and positive drug(simvastatin, 0.05 g·kg~(-1)). Other groups except the control group were fed with a high-fat and high-cholesterol diet for 6 consecutive weeks to induce hypercholesterolemia. From the 6th week, mice were administrated with corresponding drugs daily via gavage for additional 6 weeks, while continuing to be fed with a high-fat and high-cholesterol diet. Serum levels of total cholesterol(TC), triglycerides(TG), low density lipoprotein-cholesterol(LDL-c), high density lipoprotein-cholesterol(HDL-c), and total bile acid(TBA), as well as liver TC and TG levels and fecal TBA level, were determined by commercial assay kits. Hematoxylin-eosin(HE) staining, oil red O staining, and transmission electron microscopy were performed to observe the pathological changes in the liver. Three livers samples were randomly selected from each of the control, model, and high-dose fresh Rehmanniae Radix groups for high-throughput transcriptome sequencing. Differentially expressed genes were mined and KEGG pathway enrichment analysis was performed to predict the key pathways and target genes of the water extract of fresh Rehmanniae Radix in the treatment of hypercholesterolemia. RT-qPCR was employed to measure the mRNA levels of cholesterol 7α-hydroxylase(CYP7A1) and cholesterol 27α-hydroxylase(CYP27A1) in the liver. Western blot was employed to determine the protein levels of CYP7A1 and CYP27A1 in the liver as well as farnesoid X receptor(FXR), apical sodium-dependent bile acid transporter(ASBT), and ileum bile acid-binding protein(I-BABP) in the ileum. The results showed that the water extract of fresh Rehmanniae Radix significantly lowered the levels of TC and TG in the serum and liver, as well as the level of LDL-c in the serum. Conversely, it elevated the level of HDL-c in the serum and TBA in feces. No significant difference was observed in the level of TBA in the serum among groups. HE staining, oil red O staining, and transmission electron microscopy showed that the water extract reduced the accumulation of lipid droplets in the liver. Further mechanism studies revealed that the water extract of fresh Rehmanniae Radix significantly down-regulated the protein levels of FXR and bile acid reabsorption-related proteins ASBT and I-BABP. Additionally, it enhanced CYP7A1 and CYP27A1, the key enzymes involved in bile acid synthesis. Therefore, it is hypothesized that the water extract of fresh Rehmanniae Radix may exert an anti-hypercholesterolemic effect by regulating FXR/ASBT/I-BABP signaling, inhibiting bile acid reabsorption, and increasing bile acid excretion, thus facilitating the conversion of cholesterol to bile acids.
Animals
;
Male
;
Bile Acids and Salts/metabolism*
;
Mice, Inbred C57BL
;
Mice
;
Diet, High-Fat/adverse effects*
;
Cholesterol/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hypercholesterolemia/genetics*
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Rehmannia/chemistry*
;
Liver/drug effects*
;
Humans
;
Cholesterol 7-alpha-Hydroxylase/genetics*
;
Plant Extracts
7.Correlation between differences in starch gelatinization, water distribution, and terpenoid content during steaming process of Curcuma kwangsiensis root tubers by multivariate statistical analysis.
Yan LIANG ; Meng-Na YANG ; Xiao-Li QIN ; Zhi-Yong ZHANG ; Zhong-Nan SU ; Hou-Kang CAO ; Ke-Feng ZHANG ; Ming-Wei WANG ; Bo LI ; Shuo LI
China Journal of Chinese Materia Medica 2025;50(10):2684-2694
To elucidate the mechanism by which steaming affects the quality of Curcuma kwangsiensis root tubers, methods such as LSCM, RVA, dual-wavelength spectrophotometry, LF-NMR, and LC-MS were employed to qualitatively and quantitatively detect changes in starch gelatinization characteristics, water distribution, and material composition of C. kwangsiensis root tubers under different steaming durations. Based on multivariate statistical analysis, the correlation between differences in gelatinization parameters, water distribution, and terpenoid material composition was investigated. The results indicate that steaming affects both starch gelatinization and water distribution in C. kwangsiensis. During the steaming process, transformations occur between amylose and amylopectin, as well as between semi-bound water and free water. After 60 min of steaming, starch gelatinization and water distribution reached an equilibrium state. The content of amylopectin, the amylose-to-amylopectin ratio, and parameters such as gelatinization temperature, viscosity, breakdown value, and setback value were significantly correlated(P≤0.05). Additionally, the amylose-to-amylopectin ratio was significantly correlated with total free water and total water content(P≤0.05). Steaming induced differences in the material composition of C. kwangsiensis root tubers. Clustering of primary metabolites in the OPLS-DA model was distinct, while secondary metabolites were classified into 9 clusters using the K-means clustering algorithm. Differential terpenoid metabolites such as(-)-α-curcumene were significantly correlated with zerumbone, retinal, and all-trans-retinoic acid(P<0.05). Curcumenol was significantly correlated with isoalantolactone and ursolic acid(P<0.05), while all-trans-retinoic acid was significantly correlated with both zerumbone and retinal(P<0.05). Alpha-tocotrienol exhibited a significant correlation with retinal and all-trans-retinoic acid(P<0.05). Amylose was extremely significantly correlated with(-)-α-curcumene, curcumenol, zerumbone, retinal, all-trans-retinoic acid, and α-tocotrienol(P<0.05). Amylopectin was significantly correlated with zerumbone(P<0.05) and extremely significantly correlated with(-)-α-curcumene, curcumenol, zerumbone, retinal, all-trans-retinoic acid, and 9-cis-retinoic acid(P<0.01). The results provide scientific evidence for elucidating the mechanism of quality formation of steamed C. kwangsiensis root tubers as a medicinal material.
Curcuma/chemistry*
;
Starch/chemistry*
;
Multivariate Analysis
;
Water/chemistry*
;
Terpenes/analysis*
;
Plant Roots/chemistry*
;
Plant Tubers/chemistry*
;
Drugs, Chinese Herbal/chemistry*
8.Effect and mechanism of Xintong Granules in ameliorating myocardial ischemia-reperfusion injury in rats by regulating gut microbiota.
Yun-Jia WANG ; Ji-Dong ZHOU ; Qiu-Yu SU ; Jing-Chun YAO ; Rui-Qiang SU ; Guo-Fei QIN ; Gui-Min ZHANG ; Hong-Bao LIANG ; Shuai FENG ; Jia-Cheng ZHANG
China Journal of Chinese Materia Medica 2025;50(14):4003-4014
This study investigates the mechanism by which Xintong Granules improve myocardial ischemia-reperfusion injury(MIRI) through the regulation of gut microbiota and their metabolites, specifically short-chain fatty acids(SCFAs). Rats were randomly divided based on body weight into the sham operation group, model group, low-dose Xintong Granules group(1.43 g·kg~(-1)·d~(-1)), medium-dose Xintong Granules group(2.86 g·kg~(-1)·d~(-1)), high-dose Xintong Granules group(5.72 g·kg~(-1)·d~(-1)), and metoprolol group(10 mg·kg~(-1)·d~(-1)). After 14 days of pre-administration, the MIRI rat model was established by ligating the left anterior descending coronary artery. The myocardial infarction area was assessed using the 2,3,5-triphenyltetrazolium chloride(TTC) staining method. Apoptosis in tissue cells was detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) assay. Pathological changes in myocardial cells and colonic tissue were observed using hematoxylin-eosin(HE) staining. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), creatine kinase MB isoenzyme(CK-MB), and cardiac troponin T(cTnT) in rat serum were quantitatively measured using enzyme-linked immunosorbent assay(ELISA) kits. The activities of lactate dehydrogenase(LDH), creatine kinase(CK), and superoxide dismutase(SOD) in myocardial tissue, as well as the level of malondialdehyde(MDA), were determined using colorimetric assays. Gut microbiota composition was analyzed by 16S rDNA sequencing, and fecal SCFAs were quantified using gas chromatography-mass spectrometry(GC-MS). The results show that Xintong Granules significantly reduced the myocardial infarction area, suppressed cardiomyocyte apoptosis, and decreased serum levels of pro-inflammatory cytokines(TNF-α, IL-1β, and IL-6), myocardial injury markers(CK-MB, cTnT, LDH, and CK), and oxidative stress marker MDA. Additionally, Xintong Granules significantly improved intestinal inflammation in MIRI rats, regulated gut microbiota composition and diversity, and increased the levels of SCFAs(acetate, propionate, isobutyrate, etc.). In summary, Xintong Granules effectively alleviate MIRI symptoms. This study preliminarily confirms that Xintong Granules exert their inhibitory effects on MIRI by regulating gut microbiota imbalance and increasing SCFA levels.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Male
;
Myocardial Reperfusion Injury/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Apoptosis/drug effects*
;
Humans
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/genetics*
;
Malondialdehyde/metabolism*
9.Application of artificial intelligence in laboratory hematology: Advances, challenges, and prospects.
Hongyan LIAO ; Feng ZHANG ; Fengyu CHEN ; Yifei LI ; Yanrui SUN ; Darcée D SLOBODA ; Qin ZHENG ; Binwu YING ; Tony HU
Acta Pharmaceutica Sinica B 2025;15(11):5702-5733
The diagnosis of hematological disorders is currently established from the combined results of different tests, including those assessing morphology (M), immunophenotype (I), cytogenetics (C), and molecular biology (M) (collectively known as the MICM classification). In this workflow, most of the results are interpreted manually (i.e., by a human, without automation), which is expertise-dependent, labor-intensive, time-consuming, and with inherent interobserver variability. Also, with advances in instruments and technologies, the data is gaining higher dimensionality and throughput, making additional challenges for manual analysis. Recently, artificial intelligence (AI) has emerged as a promising tool in clinical hematology to ensure timely diagnosis, precise risk stratification, and treatment success. In this review, we summarize the current advances, limitations, and challenges of AI models and raise potential strategies for improving their performance in each sector of the MICM pipeline. Finally, we share perspectives, highlight future directions, and call for extensive interdisciplinary cooperation to perfect AI with wise human-level strategies and promote its integration into the clinical workflow.
10.The Role of Autophagy in Erectile Dysfunction
Changjing WU ; Yang XIONG ; Fudong FU ; Fuxun ZHANG ; Feng QIN ; Jiuhong YUAN
The World Journal of Men's Health 2025;43(1):28-40
Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future.

Result Analysis
Print
Save
E-mail