1.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
2.Effect and mechanism of compatibility of Astragali Radix-Puerariae Lobatae Radix on ferroptosis in T2DM insulin resistance rats
Shuang WEI ; Feng HAO ; Wenchun ZHANG ; Zhangyang ZHAO ; Ji LI ; Dongwei HAN ; Huan XING
China Pharmacy 2025;36(1):57-63
OBJECTIVE To explore the effect and potential mechanism of the compatibility of Astragali Radix-Puerariae Lobatae Radix on ferroptosis of liver cells in type 2 diabetes mellitus (T2DM) insulin resistance (IR) rats. METHODS Sixty male SD rats were randomly divided into control group (12 rats) and modeling group (48 rats). The modeling group was fed with a high- fat diet for 4 consecutive weeks and then given a one-time tail vein injection of 1% streptozotocin to establish T2DM IR model. The model rats were randomly divided into model group, the compatibility of Astragali Radix-Puerariae Lobatae Radix group [QG group, 4.05 g/(kg·d), intragastric administration], ferroptosis inhibitor ferrostatin-1 group [Fer-1 group, 5 mg/kg by intraperitoneal injection, once every other day], the compatibility of Astragali Radix-Puerariae Lobatae Radix+ferroptosis inducer erastin group [QG+erastin group, 4.05 g/(kg·d) by intragastric administration+erastin 10 mg/(kg·d), intraperitoneal injection]. After 4 weeks of intervention, serum fasting blood glucose (FBG) and fasting insulin (FINS) were measured in each group of rats, and homeostasis model assessment of insulin resistance (HOMA-IR) and the natural logarithm of insulin action index(IAI) were calculated; the serum levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate transaminase (AST) and alanine transaminase (ALT), Fe2+ and Fe content, glutathione (GSH), malondialdehyde (MDA) and superoxide dismutase (SOD) levels, NADP+/NADPH ratio and reactive oxygen species (ROS) were determined. The pathological morphology of its liver tissue was observed; the protein expressions of glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), long-chain acyl-CoA synthetase 3 (ACSL3), ACSL4, ferritin mitochondrial (FTMT), and cystine/glutamate anti-porter (xCT) in the liver tissue of rats were detected. RESULTS Compared with control group, the liver cells in the model group of rats showed disordered arrangement, swelling, deepened nuclear staining, and more infiltration of inflammatory cells, as well as a large number of hepatocyte vacuoles and steatosis; FBG (after medication), the levels of TC, TG, LDL-C, AST, ALT, FINS, MDA and ROS, HOMA-IR, Fe2+ and Fe content, NADP+/NADPH ratio and protein expression of ACSL4 were significantly increased or up-regulated, while the levels of HDL-C, GSH and SOD, IAI, protein expressions of GPX4, FTH1, ACSL3, FTMT and xCT were significantly reduced or down-regulated (P<0.01). Compared with the model group, both QG group and Fer-1 group showed varying degrees of improvement in pathological damage of liver tissue and the levels of the above indicators, the differences in the changes of most indicators were statistically significant (P<0.01 or P<0.05). Compared with QG group, the improvement of the above indexes of QG+erastin group had been reversed significantly (P<0.01). CONCLUSIONS The compatibility decoction of Astragali Radix-Puerariae Lobatae Radix can reduce the level of FBG in T2DM IR rats, and alleviate IR degree, ion overload and pathological damage of liver tissue. The above effects are related to the inhibition of ferroptosis.
3.Role of prohibitin 2 in mitophagy pathway against atherosclerosis in rats undergoing endurance training
Mingxiao SONG ; Junshunzi CHEN ; Ningwei WANG ; Huan CAI ; Hong FENG
Chinese Journal of Tissue Engineering Research 2025;29(11):2294-2300
BACKGROUND:Exercises can reduce blood lipids and slow down the development of atherosclerosis.Atherosclerosis begins with mitochondrial dysfunction,and prohibitin 2 is involved in mitophagy by endurance training. OBJECTIVE:To explore the role of endurance training in the intervention of prohibitin 2 protein in the mitophagy autophagy pathway in atherosclerosis. METHODS:A total of 40 Wistar rats were randomly divided into control group,exercise group,atherosclerosis group and atherosclerosis combined with exercise group,with 10 rats in each group.A rat model of atherosclerosis was constructed by combining a high-fat diet(9 weeks)with vitamin D injections(weeks 1,3,and 6)in the latter two groups,while the two exercise groups were subjected to progressing intensity endurance training for 9 weeks.After the intervention,lipid and pathological detections were conducted to observe the modeling and interventional effects.Mitochondrial membrane potential and mitophagy proteins were detected by microplate reader and western blot.Immunofluorescence staining was used to observe the co-localization of mitophagy proteins in aortic tissue. RESULTS AND CONCLUSION:Lipid and pathological sections showed that compared with the atherosclerosis group,the serum low-density lipoprotein cholesterol and total cholesterol levels and aortic lipid deposition area were significantly reduced in the atherosclerosis combined with exercise group(P<0.001).The results of mitochondrial membrane potential showed that the significant decrease in mitochondrial membrane potential of the aorta in the atherosclerosis combined with exercise group was reversed(P<0.01).The results of western blot assay showed that compared with the control group,the mitochondrial protein expression of prohibitin 2,LC3Ⅱ/Ⅰ,PINK1 and Parkin was significantly increased(P<0.05),and the protein expression of PARL and PGAM5 decreased(P<0.05).Compared with the atherosclerosis group,the protein expression of PINK1 and Parkin in the mitchondria of rats in the atherosclerosis combined with exercise group was significantly decreased(P<0.05),and the protein expressions of prohibitin 2,LC3Ⅱ/Ⅰ,PARL and PGAM5 were significantly increased(P<0.05).Immunofluorescence results showed that compared with the control group,the co-localization of LC3 and PINK1 with TOMM20 was significantly increased in the atherosclerosis group(P<0.05),while compared with the atherosclerosis group,the co-localization of LC3 and PINK1 with TOMM20 was significantly increased in the atherosclerosis combined with exercise group(P<0.05).Co-localization of LC3 and PARL with prohibitin 2 was significantly increased in the atherosclerosis group compared with the control group(P<0.01),co-localization of LC3 with prohibitin 2 was significantly increased in the atherosclerosis combined with exercise group compared with the atherosclerosis group(P<0.01),and co-localization of PARL protein with prohibitin 2 was significantly decreased in the atherosclerosis combined with exercise group compared with the atherosclerosis group(P<0.01).To conclude,endurance training can induce the expression of prohibitin 2 in the inner mitochondrial membrane and promote the binding of prohibitin 2 to the mitophagy junction protein to complete mitophagy,restore mitochondrial function,and slow down the occurrence of atherosclerosis.
4.The role of histone deacetylase 3 in diabetes and its complications, and the research progress on histone deacetylase 3 inhibitors
Jia-yu ZHAI ; Cun-yu FENG ; Xue-feng GAO ; Li-ran LEI ; Lei LEI ; Yi HUAN
Acta Pharmaceutica Sinica 2025;60(1):1-11
Histone deacetylase 3 (HDAC3) is an epigenetic modification enzyme that plays a crucial role in the development and progression of diabetes and its complications. Studies have reported that increased HDAC3 activity is associated with pancreatic
5.Setup Error and Its Influencing Factors in Radiotherapy for Spinal Metastasis
Wenhua QIN ; Xin FENG ; Zengzhou WANG ; Shangnan CHU ; Hong WANG ; Shiyu WU ; Cheng CHEN ; Fukui HUAN ; Bin LIANG ; Tao ZHANG
Cancer Research on Prevention and Treatment 2025;52(5):400-404
Objective To investigate the setup error in patients with spinal bone metastasis who underwent radiotherapy under the guidance of kilovoltage cone-beam CT (KV-CBCT). Methods A total of 118 patients with spinal metastasis who underwent radiotherapy, including 17 cases of cervical spine, 62 cases of thoracic spine, and 39 cases of lumbar spine, were collected. KV-CBCT scans were performed using the linear accelerators from Elekta and Varian’s EDGE system. CBCT images were registered with reference CT images in the bone window mode. A total of 973 data were collected, and 3D linear errors were recorded. Results The patients with spinal bone metastasis were grouped by site, height, weight, and BMI. The P value of the patients grouped only by site was P<0.05, which was statistically significant. Conclusion When grouped by site in the 3D direction, the positioning effect of cervical spine is better than that of thoracic and lumbar spine. The positioning effect of the thoracic spine is better in the head and foot direction but worse in the left and right direction compared with that of the lumbar spine. Instead of extending or narrowing the margin according to the BMI of patients with spinal metastasis, the margin must be changed according to the site of spinal bone metastasis.
6.Exploration of Thoughts and Possible Therapeutic Mechanism of Treating Male Infertility from the Perspective of Spleen and Kidney by Regulating Intestinal Flora
Nian-Wen HUANG ; Bin WANG ; Ji-Sheng WANG ; Huan-Zhou BI ; Juan-Long FENG ; Long-Ji SUN ; Hai-Song LI
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):776-781
Based on the literature study,the thoughts and possible therapeutic mechanism in treating male infertility from the perspective of spleen and kidney by regulating intestinal flora were explored.Disturbance of intestinal flora is one of the important factors leading to the development of male infertility,and the spleen and kidney have certain similarities to intestinal flora in the physiological function and pathological changes.Moreover,tonifying the kidney and strengthening the spleen can regulate the intestinal flora by fostering the growth of beneficial bacteria,inhibiting the reproduction of pathogenic bacteria,and protecting the barrier of the intestinal mucosa.Therefore,the possible therapeutic mechanisms in treating male infertility with the prescriptions for tonifying the kidney and strengthening the spleen to regulate intestinal flora are as follows:inhibiting the expression of inflammatory factors to reduce the inflammatory reaction of testicular tissues;improving the antioxidant capacity to alleviate the damage of spermatozoa caused by oxidative stress,and improving the bad mood to alleviate the impact of psychological stress on the reproductive system.The exploration of the thoughts for treating male infertility from the perspective of spleen and kidney by regulating intestinal flora may provide a new entry point for modern Chinese medicine clinical treatment of male infertility.
7.Study on the Treatment of Dampness Stagnated in the Triple Energizer Based on the Theory of"Qi Transformation Leading to the Removal of Pathogenic Dampness"
Xiao-Ying MO ; Wei-Jun RUAN ; Feng-Ling ZHENG ; Huan-Huan LUO
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(4):1048-1052
The statement of"qi transformation leading to the removal of pathogenic dampness"was recorded in Wen Bing Tiao Bian(Analysis on Epidemic Febrile Diseases)written by the Qing Dynasty physician WU Ju-Tong.Dampness in the triple energizer is caused by the dysfunction of qi transformation,and the treatment of dampness must be based on the activation of qi movement and focused on the promotion of qi movement and the restoration of the qi transformation in the triple energizer.For the treatment of dampness attack in the upper energizer,therapies of dispersing lung to smooth qi and resolving dampness to relieve the obstruction are recommended.For the treatment of dampness obstruction in the middle energizer,therapy of activating spleen qi by strengthening spleen and moving qi is stressed for helping the removal of dampness and for the eradication of the source of dampness.For the treatment of dampness stagnation in the lower energizer,therapy of draining dampness with sweet-light medicines and activating yang can be used according to the illness status.The three methods of treating dampness,namely dispersing the upper energizer,activating the middle energizer and draining the lower energizer,all embody the mechanism of"qi transformation leading to the removal of pathogenic dampness",and the therapies of dispersing lung with light medicines,inducing perspiration by opening striated layer,eliminating dampness with aromatics and draining dampness with sweet-light medicines should be used in accordance with the syndromes.The elucidation of the academic thoughts of"qi transformation leading to the removal of pathogenic dampness"can provide theoretical reference for the fundamental research of dampness syndrome and clinical application of therapies for resolving dampness in Chinese medicine.
8.Inflammatory pseudotumor-like follicular dendritic cell sarcoma of the spleen:2 cases report and literature review
Huan DU ; Li-Shuang LIN ; Zun-Guo DU ; Jie FAN ; Yun BAO ; Feng TANG ; Yuan-Yuan CHENG
Fudan University Journal of Medical Sciences 2024;51(1):128-132
Inflammatory pseudotumor-like follicular dendritic cell sarcoma(IPT-like FDCS)is a very rare malignant tumor that is considered to be associated with Epstein-Barr virus.Two patients in this report were generally healthy,and the spleen tumor was found during physical examination.After completing the examination,laparoscopic total splenectomy was performed,and the pathological result showed IPT-like FDCS.Postoperative chemoradiotherapy was not performed in either case.The disease has no characteristic clinical manifestations,and imaging overlaps with sarcoma.Microscopic manifestation showed CD21,CD23 and EBER positive spindle tumor cells in the inflammatory background with matted arrangement.Due to the interwoven distribution of tumor cells and lymphocytes,diagnosis is difficult.In this article,we report this two cases with literature review and summarize their clinical and pathological features to improve diagnostic cognition.
9.Bioinformatics Analysis and Validation of Differential Expression of miRNAs in Plasma Exosomes from Patients with Active Rheumatoid Arthritis
Jian LU ; Ping FENG ; Jing WU ; Huan YANG
Journal of Modern Laboratory Medicine 2024;39(2):62-67
Objective To screen differentially expressed microRNAs(miRNAs)in plasma exosomes of active rheumatoid arthritis(RA)patients and healthy controls and conduct bioinformatics analysis for exploring the role and potential clinical application value of miRNAs in the pathogenesis of RA.Methods From January 2023 to April 2023,39 RA patients who visited the Rheumatology and Immunology Department of the Second Affiliated Hospital of Soochow University were selected as the study subjects,while 39 healthy individuals were selected as normal controls.The expression levels of miRNAs in plasma exosomes were detected by Illumina high-throughput sequencing technology,and the differentially expressed miRNAs were obtained by log2(Fold Change)absolute value>1 and P value<0.05.Six miRNAs were selected by the order from small to large P-value for bioinformatics analysis and validated using quantitative real-time fluorescence PCR(qRT-PCR).Results Compared with healthy controls,22 aberrantly expressed miRNAs were detected in plasma exosomes of RA patients,of which 4 were up-regulated and 18 were down-regulated.Among them,miR-30b-5p,miR-144-3p,miR-20a-5p,miR-223-5p,miR-425-3p,and miR-589-5p showed changed significantly.GO and KEGG enrichment analysis indicated that differentially expressed miRNAs may be involved in disease progression through regulation of signaling pathways such as TGF-β and PI3K/AKT,which were related to biological processes such as Th17 differentiation,intercellular interactions,and protein phosphorylation.The qRT-PCR validation results showed that the expression of miR-144-3p and miR-425-3p were significantly reduced in plasma exosomes of RA patients compared to healthy controls(t=3.617,3.595,all P<0.001),while the differences of miR-30b-5p,miR-223-5p,miR-589-5p,and miR-20a-5p expression were not statistically significant(t=1.956,1.331,1.662,1.861,all P>0.05).Conclusion The expression profile of plasma exosomal miRNAs changed in RA patients,which may be involved in disease progression through TGF-β and other signaling pathways.Exosome-derived miR-144-3p and miR-425-3p may be potential serological markers for RA diagnosis.
10.Application of melt electrowriting technology in tissue engineering
Yu JIANG ; Feng HE ; Huan LIU ; Ruixin WU
Chinese Journal of Tissue Engineering Research 2024;28(10):1606-1612
BACKGROUND:With computer-aided design,melt electrowriting technology can precisely construct 3D tissue engineering scaffolds with specific morphology,which has attracted increasing attention in tissue engineering. OBJECTIVE:To elaborate on the progress of melt electrowriting technology in tissue engineering in recent years. METHODS:PubMed and CNKI were used to retrieve articles about applications of melt electrowriting technology in tissue engineering.The search time was from March 2008 to February 2023.The search terms were"melt electrowriting,melt electrospinning,electrospinning,tissue engineering,scaffold,regeneration"in English and"melt electrowriting,electrospinning,tissue engineering"in Chinese.A preliminary screening of articles was performed by reading the titles and abstracts.Finally,69 articles were included for review. RESULTS AND CONCLUSION:(1)Melt electrowriting technology can achieve precise layer-by-layer deposition of fibers compared to traditional electrospinning technology,which better simulates the complex structure of natural tissues.Compared to other 3D printing technologies,smaller-diameter fibers can be prepared by melt electrowriting technology,resulting in highly ordered porous structures.(2)By combining with other scaffold preparation techniques or materials,such as fused deposition modeling,solution electrospinning technology,and hydrogel,melt electrowriting technology shows great potential in preparing complex tissue engineering scaffolds,which provides certain possibilities for achieving complex tissue regeneration.(3)The regeneration of complex tissues often involves blood vessels,nerves,and soft and hard tissues at the same time.The regeneration of blood vessels and nerves is of great significance to realize the physiological reconstruction of tissues.However,soft and hard tissues have certain difficulties to realize the coordinated regeneration of both due to their different biological and mechanical properties.Melt electrowriting technology has certain advantages in the field of bionic scaffolds due to its good biocompatibility,the ability to prepare multi-scale scaffolds and high porosity.

Result Analysis
Print
Save
E-mail