1.Research progress on the correlation of dry eye with depression
Feng JIN ; Baoyue MI ; Jingqing MU ; Jingjing CAO ; Xia HUA
International Eye Science 2026;26(1):74-79
Dry eye disease is a chronic ocular surface disorder of multifactorial origin, characterized by a loss of tear film homeostasis and associated with a range of ocular discomfort symptoms. Growing evidence underscores a significant bidirectional relationship between dry eye and depression: individuals with dry eye disease exhibit a higher prevalence of depressive disorders, and conversely, those diagnosed with depression demonstrate an increased susceptibility to developing dry eye. This interplay is mediated through several pathophysiological pathways, such as chronic inflammation, cerebral functional alterations, gut microbiome dysregulation, and sleep disturbances, which may collectively sustain a vicious cycle. The use of antidepressant therapy introduces further complexity, exerting heterogeneous effects on dry eye—some agents may offer symptomatic relief, whereas others can aggravate ocular surface impairment. The mechanisms responsible for these differential outcomes remain incompletely elucidated and merit further investigation. This review systematically consolidates epidemiological data on the dry eye-depression link, examines potential shared pathological mechanisms, and evaluates current therapeutic options. We propose an integrated management approach that combines conventional dry eye treatments, such as traditional Chinese medicine, electroacupuncture, physical activity and antidepressants—a multimodal strategy that may yield synergistic benefits in alleviating both ocular and affective symptoms, thereby improving overall quality of life. Moving forward, research should focus on deciphering the underlying mechanistic pathways and facilitating the translation of these insights into clinical practice to inform targeted, combined treatment regimens for patients with dry eye and depression.
2.Nutritional supply status of school meals for primary and secondary students in three cities of Henan Province
LI Shan, YANG Li, HE Qidong, CAO Linlin, CHEN Xiaolong, LIU Bingrui, FENG Yinhua, FU Pengyu
Chinese Journal of School Health 2025;46(1):50-52
Objective:
To assess the nutritional supply status of school meals for primary and secondary school students in Henan Province, so as to provide a basis for scientific guidance of school meals.
Methods:
During 2021-2023, 115 lunch and dinner samples were collected from 25 primary and secondary schools in Zhoukou, Anyang and Luoyang of Henan Province by a direct selection method, and 13 nutrients were determined for each sample. The nutrient supply was evaluated based on Nutrition Guidelines of School Meals and Reference Intake of Dietary Nutrients for Chinese Residents (2023 Edition). Mann-Whitney U test was used to compare the differences of nutritional supply between urban and rural schools.
Results:
The median values for energy (709.77 kcal,1 kcal=4.18 kJ), fat energy supply ratio (0.27) and carbohydrate energy supply ratio (0.55) in the 66 lunches and dinners from primary school were within the recommended range. The supply of protein (28.39 g) and sodium (1 464.59 mg) was excessive. The median values of zinc (2.62 mg) and dietary fiber (5.19 g) were lower than the reference values. No statistically significant differences were observed in the supply of 13 nutrients between urban and rural primary schools( U = 427.00 -633.00, P > 0.05 ). Among 49 samples from secondary schools, the median value of energy supply (930.02 kcal), carbohydrate energy ratio ( 0.54 ) and fat energy supply ratio(0.25) were within the recommended range; and the median values of protein (38.82 g) and sodium (2 556.80 mg) were higher than the standard; and the median values of calcium (250.32 mg) and vitamin B1 (0.16 mg) were lower than the standard. Additionally, the differences in the level of vitamin B2 ( U =372.00) and zinc ( U =375.00) between the urban and rural secondary schools were statistically significant ( P <0.05).
Conclusion
Nutrient supply of primary and secondary school meals in three cities of Henan Province is inadequate and imbalanced, and the recipe need to be further optimized and improved.
3.Synthesis and anti-breast cancer activity of novel cyclic mono-carbonyl curcumin analogues
Xianhu FENG ; Yongjie CHEN ; Lin CHEN ; Yi HOU ; Wanjun CAO ; Qiang SU
China Pharmacy 2025;36(5):563-567
OBJECTIVE To design and synthesize mono-carbonyl curcumin analogues(MCACs) and investigate the activities of them against breast cancer. METHODS The analogues F1, F2, and F3 were obtained by aldol condensation reaction, and their antitumor activities(including the activities of human breast cancer cell MCF-7 and human lung cancer cell A549) were detected by MTT assay [evaluated with half inhibitory concentration(IC50)]. The results of MTT assay were compared with those of curcumin. Bioinformatics methods were used to collect the core targets of analogues F1, F2 and F3 acting on breast cancer, and then molecular docking verification was carried out. The cell experiments were conducted to investigate the effects of high, medium and low concentrations (16, 8, 4 μmol/L) of F1, F2 and F3 on the expression of the first core target protein as well as the effects of medium concentration of F1, F2 and F3 on the expression of cleaved-caspase-3. RESULTS Compared with curcumin, IC50 of analogues F1, F2 and F3 to A549 and MCF-7 cells(except for IC50 of analogue F2 to A549 cells) were decreased significantly(P< 0.05 or P<0.01); among them, IC50 of analogue F2 to MCF-7 cell was the lowest, being(9.67±1.27) μmol/L. Bioinformatics analysis showed that index of affinity of analogues F1, F2 and F3 with the first core target epidermal growth factor receptor (EGFR), protein kinase B (AKT) and AKT were 5.909 2, 8.402 5 and 6.486 6, respectively; high concentration of F1 could significantly reduce the phosphorylation level of EGFR protein in MCF-7 cells(P<0.01), while low, medium, and high concentrations of F2 and high concentration of F3 could significantly reduce the phosphorylation level of AKT protein in MCF-7 cells(P<0.05 or P<0.01). Medium concentration of F1, F2, and F3 could significantly increase the expression level of cleaved- caspase-3 protein in MCF-7 cells(P<0.01). CONCLUSIONS Designed and synthesized MCACs F1, F2 and F3 all have good anti- breast cancer activity, and F2 has better anti-breast cancer activity.
4.Effects of macrophage migration inhibitory factor on survival,proliferation,and differentiation of human embryonic stem cells
Ting HUANG ; Xiaohan ZHENG ; Yuanji ZHONG ; Yanzhao WEI ; Xufang WEI ; Xudong CAO ; Xiaoli FENG ; Zhenqiang ZHAO
Chinese Journal of Tissue Engineering Research 2025;29(7):1380-1387
BACKGROUND:Macrophage migration inhibitory factor(MIF)is a pleiotropic cytokine,which is secreted in different types of stem cells and can regulate the proliferation,differentiation and migration of various types of stem cells.Our previous research has confirmed that human embryonic stem cells secrete MIF and that its concentration in the culture medium is relatively stable.However,whether MIF is involved in the survival,proliferation and differentiation of human embryonic stem cells remains unclear. OBJECTIVE:To investigate the effects of MIF on survival,proliferation,and differentiation of human embryonic stem cells. METHODS:(1)Human embryonic stem cells H9 were cultured.The growth curve of cells was detected and plotted by CCK-8 assay.Enzyme-linked immunosorbent assay was used to determine the level of MIF in the medium.(2)To determine the effects of exogenous MIF on the survival and proliferation of human embryonic stem cells,different groups were established:the control group,which was cultured in stem cell medium without any modifications;the exogenous MIF group,which was treated with different concentrations(30,100,300 ng/mL)of MIF in the stem cell medium;the MIF inhibitor ISO-1 group,which was treated with different concentrations(2,7,21 μmol/L)of ISO-1 in the stem cell medium;and the MIF+ISO-1 group,which was treated with different concentrations of ISO-1 along with 100 ng/mL of MIF.Cell viability was assessed using the CCK-8 assay.(3)To further elucidate the effect of MIF gene on survival and proliferation of human embryonic stem cell,the MIF knockout H9 cell line was constructed by CRISPR-Cas 9 technology to observe the lineage establishment.(4)To determine the effect of high concentrations of MIF on human embryonic stem cell differentiation,100 ng/mL MIF and 100 ng/mL of CXCR4 neutralizing antibody were separately added to the normal stem cell culture medium.The expression levels of self-renewal factors(KLF4,c-MYC,NANOG,OCT4,and SOX2)and differentiation transcription factors(FOXA2,OTX2)were measured using real-time quantitative polymerase chain reaction,immunofluorescence staining,and western blot analysis. RESULTS AND CONCLUSION:(1)The logarithmic growth phase of H9 cells was between 3-6 days.Under normal growth conditions,human embryonic stem cells secreted MIF at a concentration of approximately 20 ng/mL,independent of cell quantity.(2)Compared to the control group,the addition of different concentrations of MIF had no effect on the proliferation of human embryonic stem cells(P>0.05).ISO-1 significantly inhibited the proliferation of human embryonic stem cells,with a stronger inhibition observed at higher concentrations of ISO-1(P<0.05).The addition of MIF in the presence of ISO-1 reduced the inhibitory effect of ISO-1(P<0.05).(3)Real-time quantitative polymerase chain reaction showed that knocking out 50%of the MIF gene resulted in a significant decrease in the growth vitality of human embryonic stem cells and failure to establish cell lines.(4)Adding 100 ng/mL exogenous MIF to the culture medium resulted in a decrease in the mRNA,protein,and fluorescence expression levels of the self-renewal transcription factor KLF4,while the mRNA,protein,and fluorescence expression levels of the differentiation factor FOXA2 increased.(5)When 100 ng/mL CXCR4 neutralizing antibody was added to the culture medium,the mRNA and protein expression levels of KLF4 increased,while the mRNA and protein expression levels of FOXA2 decreased,contrary to the expression trend observed in the MIF group.In conclusion,the endogenous secretion of MIF by human embryonic stem cells is essential for their survival.The addition of MIF to the culture medium does not promote the proliferation of human embryonic stem cells.However,it can lead to a decrease in the expression of the self-renewal factor KLF4 and an increase in the expression of the transcription factor FOXA2.This provides a clue for further investigation into the effects and mechanisms of MIF on the differentiation of human embryonic stem cells.The MIF-CXCR4 axis plays a regulatory role in this process.
5.Effect of extracellular vesicles for diagnosis and therapy of oral squamous cell carcinoma
Yue CAO ; Xinjian YE ; Biyao LI ; Yining ZHANG ; Jianying FENG
Chinese Journal of Tissue Engineering Research 2025;29(7):1523-1530
BACKGROUND:Extracellular vesicles are secreted into the extracellular milieu by a wide range of cell types,including tumor cells,under different physiological and pathophysiological conditions,where a wide range of biological signals and cell-to-cell signaling exists.Tumor-derived extracellular vesicles may exacerbate cancer progression,survival,invasion,and promote angiogenesis. OBJECTIVE:To review the research progress of extracellular vesicles in the diagnosis and treatment of oral squamous cell carcinoma. METHODS:Literature search was performed by the first author in PubMed,WanFang,CNKI and other databases with the keywords"EVs,oral squamous cell carcinoma,diagnosis and treatment,biopsy,tissue engineering"in Chinese and English.Finally,63 articles were included for analysis. RESULTS AND CONCLUSION:(1)In oral squamous carcinoma saliva biopsies,extracellular vesicles play a crucial role in the progression of oral squamous cell carcinoma by acting as an information transfer tool between tumor cells and the surrounding microenvironment,carrying a wide range of biomolecules including soluble proteins,lipids,DNA,and RNA.These tiny vesicles not only play a key role in tumor growth and spread,but also provide important information about the biological properties of the tumor.(2)Saliva biopsy,as a non-invasive diagnostic method,can open up new possibilities for early diagnosis and targeted treatment of oral squamous cell carcinoma by analyzing the extracellular vesicles therein.(3)It has been found that bioactive molecules,such as microRNAs(miRNAs)and specific proteins,contained within extracellular vesicles can serve as biomarkers for oral squamous carcinoma and improve the accuracy of early diagnosis.Specific proteins in extracellular vesicles such as EHD2,CAVIN1,PF4V1,and CXCL7 show potential as novel predictive biomarkers.(4)In addition,this paper highlights the potential application of extracellular vesicles in the treatment of oral squamous carcinoma.Through engineering modifications,extracellular vesicles can serve as a new generation of nanoscale drug delivery systems to enhance the efficiency and specificity of targeted tumor therapy.(5)Future studies will further explore the effect and mechanism of extracellular vesicles in oral squamous cell carcinoma,which is expected to improve patients'survival and quality of life.
6.Research advances in the effects of orexin and its receptor-related drugs on depression
Zhaoshu JIANG ; Ming CHENG ; Jie YANG ; Feng CAO ; Zhen ZHANG
China Pharmacy 2025;36(4):496-500
Depression is a psychiatric disorder whose main symptoms include low mood, loss of interest, anxiety, sleep disturbances, and changes in appetite. Orexin, a neuropeptide located in hypothalamic neurons, has a wide range of projections throughout the central nervous system and is involved in various behavioral modulations related to depression. This study systematically reviewed the effects of orexin and its receptor-related drugs on depression and found that orexin could exert complex regulatory effects on multiple brain regions by binding to related receptors, affecting emotions, sleep, anxiety, etc. The abnormal state of expression of plasma orexin in patients with depression was found. Exogenous orexin-A, selective orexin receptor 1 antagonists (SORA1s), selective orexin receptor 2 antagonists (SORA2s), and dual orexin receptor antagonists (DORAs) have demonstrated antidepressant-like effects in various animal models of depression. Among them, clinical trials involving exogenous orexin-A are relatively scarce. Drugs related to SORA1s and SORA2s, such as JNJ-61393215 and Setorexant, have made significant progress in the treatment of depression. DORAs, such as Suvorexant, Lemborexant, and Daridorexant, are primarily used to treat insomnia. Notably, Suvorexant has also shown potential in alleviating symptoms of anxiety and depression.
7.Treatment of Hyperuricemia and Gouty Arthritis by Buyang Huanwu Tongfeng Decoction via Inhibition of PPAR-γ/NF-κB/AGEs/RAGE Pathway Based on Network Pharmacology
Yue CAO ; Wanmei YAO ; Tao YANG ; Man YANG ; Ruimin JIA ; Rongrong LU ; Xue FENG ; Biwang LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):182-192
ObjectiveThis paper aims to investigate the potential molecular biological mechanism of Buyang Huanwu Tongfeng decoction in treating hyperuricemia and gouty arthritis by network pharmacology and molecular docking technology and preliminarily verify the mechanism through animal experiments. MethodsThe active ingredients and targets in the Buyang Huanwu Tongfeng decoction were obtained by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and ETCM databases. The DisGeNET and GeneCards databases were utilized to acquire disease targets associated with hyperuricemia and gouty arthritis. These disease targets were then intersected with drug targets to identify key targets. The R language ClusterProfiler package and Python were employed for conducting gene ontology(GO) enrichment analysis and Kyoto encyclopedia of genes and genomes(KEGG) enrichment analysis. The regulatory network diagram of the drug-key target-function-pathway was visualized using Cytoscape 3.9.1 software, and the protein-protein interaction (PPI) network for key targets was depicted. Finally, the hub gene was determined through topological analysis. Auto Dock, PyMOL, and other software were used for molecular docking to explore the possible therapeutic mechanism of Buyang Huanwu Tongfeng decoction for hyperuricemia and gouty arthritis. In animal experiments, a composite rat model of hyperuricemia induced by intraperitoneal injection of oteracil potassium combined with gouty arthritis induced by the modified Coderre method was established. Through hematoxylin-eosin(HE) staining, uric acid test, enzyme linked immunosorbent assay(ELISA), Western blot, and real-time polymerase chain reaction(Real-time PCR), the molecular mechanism and key targets of Buyang Huanwu Tongfeng decoction for treating hyperuricemia and gouty arthritis were observed. ResultsAfter screening and removing duplicate values, 76 active ingredients and 15 key targets were finally obtained. GO enrichment analysis yielded that the treatment of hyperuricemia and gouty arthritis with Buyang Huanwu Tongfeng decoction was significantly associated with acute inflammatory response, astrocyte activation, regulation of interleukin (IL)-8 production, nuclear receptor activity, and binding of growth factor receptor. KEGG pathway enrichment analysis obtained that the key target genes were significantly associated with the IL-17 signaling pathway, advanced glycosylation end/receptor of advanced glycation endproducts(AGE/RAGE) signaling pathway, anti-inflammatory, and other pathways. PPI network indicated that albumin(ALB), peroxisome proliferator-activated receptor-γ (PPAR-γ), IL-6, IL-1β, and C-reactive protein(CRP) were the key protein targets. The molecular docking results showed that ALB had the strongest binding force with beta-carotene (β-carotene). Biochemical results showed that blood uric acid decreased in the Buyang Huanwu Tongfeng decoction groups. HE staining results showed that the low-dose (7.76 g·kg-1·d-1), medium-dose (15.53 g·kg-1·d-1), and high-dose (31.05 g·kg-1·d-1) groups of Buyang Huanwu Tongfeng decoction had different degrees of remission, and the remission of the high-dose group was the most obvious. Fibroblastic tissue hyperplasia in synovial joints accompanied with inflammatory cell infiltration, as well as inflammatory cell infiltration in renal tissue of the high-dose group was significantly reduced, followed by the medium-dose and low-dose groups, and the expression of ALB, PPAR-γ, IL-6, IL-1β, and CRP was down-regulated to different degrees. ConclusionBy regulating the targets such as ALB, PPAR-γ, IL-6, IL-1β, and CRP, inhibiting the PPAR-γ/nuclear transcription factor (NF)-κB pathway, and reducing AGEs/RAGE-mediated inflammation, Buyang Huanwu Tongfeng decoction exerts anti-inflammatory and analgesic effects and activates blood circulation and diuresis in the treatment of hyperuricemia and gouty arthritis.
8.The Mechanisms of Neurotransmitters and Their Receptors in Exercise Central Fatigue
Lu-Lu GUAN ; Bo-Te QI ; Du-Shuo FENG ; Jing-Wang TAN ; Meng CAO ; Yu ZOU
Progress in Biochemistry and Biophysics 2025;52(6):1321-1336
Exercise fatigue is a complex physiological and psychological phenomenon that includes peripheral fatigue in the muscles and central fatigue in the brain. Peripheral fatigue refers to the loss of force caused at the distal end of the neuromuscular junction, whereas central fatigue involves decreased motor output from the primary motor cortex, which is associated with modulations at anatomical sites proximal to nerves that innervate skeletal muscle. The central regulatory failure reflects a progressive decline in the central nervous system’s capacity to recruit motor units during sustained physical activity. Emerging evidence highlights the critical involvement of central neurochemical regulation in fatigue development, particularly through neurotransmitter-mediated modulation. Alterations in neurotransmitter release and receptor activity could influence excitatory and inhibitory signal pathways, thus modulating the perception of fatigue and exercise performance. Increased serotonin (5-HT) could increase perception of effort and lethargy, reduce motor drive to continue exercising, and contribute to exercise fatigue. Decreased dopamine (DA) and noradrenaline (NE) neurotransmission can negatively impact arousal, mood, motivation, and reward mechanisms and impair exercise performance. Furthermore, the serotonergic and dopaminergic systems interact with each other; a low 5-HT/DA ratio enhances motor motivation and improves performance, and a high 5-HT/DA ratio heightens fatigue perception and leads to decreased performance. The expression and activity of neurotransmitter receptors would be changed during prolonged exercise to fatigue, affecting the transmission of nerve signals. Prolonged high-intensity exercise causes excess 5-HT to overflow from the synaptic cleft to the axonal initial segment and activates the 5-HT1A receptor, thereby inhibiting the action potential of motor neurons and affecting the recruitment of motor units. During exercise to fatigue, the DA secretion is decreased, which blocks the binding of DA to D1 receptor in the caudate putamen and inhibits the activation of the direct pathway of the basal ganglia to suppress movement, meanwhile the binding of DA to D2 receptor is restrained in the caudate putamen, which activates the indirect pathway of the basal ganglia to influence motivation. Furthermore, other neurotransmitters and their receptors, such as adenosine (ADO), glutamic acid (Glu), and γ‑aminobutyric acid (GABA) also play important roles in regulating neurotransmitter balance and fatigue. The occurrence of central fatigue is not the result of the action of a single neurotransmitter system, but a comprehensive manifestation of the interaction between multiple neurotransmitters. This review explores the important role of neurotransmitters and their receptors in central motor fatigue, reveals the dynamic changes of different neurotransmitters such as 5-HT, DA, NE, and ADO during exercise, and summarizes the mechanisms by which these neurotransmitters and their receptors regulate fatigue perception and exercise performance through complex interactions. Besides, this study presents pharmacological evidence that drugs such as agonists, antagonists, and reuptake inhibitors could affect exercise performance by regulating the metabolic changes of neurotransmitters. Recently, emerging interventions such as dietary bioactive components intake and transcranial electrical stimulation may provide new ideas and strategies for the prevention and alleviation of exercise fatigue by regulating neurotransmitter levels and receptor activity. Overall, this work offers new theoretical insights into the understanding of exercise central fatigue, and future research should further investigate the relationship between neurotransmitters and their receptors and exercise fatigue.
9.LC-MS-based phosphoproteomic profiling of the acute phase of myocardial infarction in mice
Yang GAO ; Jian ZHANG ; Shiyu HU ; Jingpu WANG ; Yiwen WANG ; Jiatian CAO ; Feng ZHANG
Chinese Journal of Clinical Medicine 2025;32(3):392-402
Objective To investigate dynamic changes in myocardial protein phosphorylation during the acute phase of myocardial infarction (MI) in mice. Methods Six 8-week-old C57BL/6J mice were randomly assigned to MI model (n=3) or sham-operated control (n=3) groups. Cardiac tissues were harvested 72 hours post-intervention for proteomic analysis. Phosphorylation modifications were systematically characterized using liquid chromatography-mass spectrometry (LC-MS). Bioinformatics analyses included differential phosphorylation screening, functional enrichment, hierarchical clustering, and protein-protein interaction network. Results LC-MS identified 1 921 differentially phosphorylated sites (20 tyrosine and 1 901 serine/threonine sites) across 851 proteins. Compared with controls, MI hearts exhibited significant phosphorylation upregulation at 1 545 sites and downregulation at 376 sites (P<0.05). Conclusions This study delineates MI-associated phosphorylation dynamics, providing mechanistic insights and potential therapeutic targets for acute MI intervention.
10.Analysis of xenobiotics in colon and immune tissues of ulcerative colitis mice after administration of Sini San by LC-MS
Yanfang CAO ; Yali WANG ; Anhui WANG ; Yongshun CHEN ; Sihan LI ; Kai FENG ; FENG YANG ; Rui SONG
Journal of China Pharmaceutical University 2025;56(1):73-79
Dysregulation of immune response is currently recognized as one of the important pathological factors in ulcerative colitis (UC). Based on the confirmation that the Sini San (SNS) can significantly improve the colon inflammation induced by dextran sulfate sodium sulfate (DSS) in mice, the present work systematically studied the xenobiotics in the colon and mesenteric lymph nodes, spleen, and thymus of UC mice after administration of SNS by high-performance liquid chromatography-ion trap time-of-flight mass spectrometry (HPLC-IT-TOF-MS). The results showed that, in addition to the colon, some components and their metabolites in SNS could be distributed in immune tissues, and it was found that the quality of relatively low-abundance and weakly responsive components such as saikosaponin a, paeoniflorin, and glycyrrhizic acid had the characteristics of efficient transmission to the colon and lymphoid organs. These components were very likely to be the source of pharmacodynamic substances of SNS. The findings of this study lay a foundation for the study of the efficacy and molecular mechanism of the components against ulcerative colitis, and also provide a scientific basis for the rational clinical application of SNS, which is expected to promote the secondary development of its preparations.


Result Analysis
Print
Save
E-mail