1.The clinical value of artificial intelligence quantitative parameters in distinguishing pathological grades of stage Ⅰ invasive pulmonary adenocarcinoma
Yun LIANG ; Mengmeng REN ; Delong HUANG ; Jingyan DIAO ; Xuri MU ; Guowei ZHANG ; Shuliang LIU ; Xiuqu FEI ; Dongmei DI ; Ning XIE
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):598-607
Objective To explore the clinical value of artificial intelligence (AI) quantitative parameters in distinguishing pathological grades of stageⅠ invasive adenocarcinoma (IAC). Methods Clinical data of patients with clinical stageⅠ IAC admitted to Yantaishan Hospital Affiliated to Binzhou Medical University from October 2018 to May 2023 were retrospectively analyzed. Based on the 2021 WHO pathological grading criteria for lung adenocarcinoma, IAC was divided into gradeⅠ, grade Ⅱ, and grade Ⅲ. The differences in parameters among the groups were compared, and logistic regression analysis was used to evaluate the predictive efficacy of AI quantitative parameters for grade Ⅲ IAC patients. Parameters were screened using least absolute shrinkage and selection operator (LASSO) regression analysis. Three machine learning models were constructed based on these parameters to predict grade Ⅲ IAC and were internally validated to assess their efficacy. Nomograms were used for visualization. Results A total of 261 IAC patients were included, including 101 males and 160 females, with an average age of 27-88 (61.96±9.17) years. Six patients had dual primary lesions, and different lesions from the same patient were analyzed as independent samples. There were 48 patients of gradeⅠ IAC, 89 patients of grade Ⅱ IAC, and 130 patients of grade Ⅲ IAC. There were statitical differences in the AI quantitive parameters such as consolidation/tumor ratio (CTR), ect among the three goups. (P<0.05). Univariate analysis showed that the differences in all variables except age were statistically significant (P<0.05) between the group gradeⅠ+grade Ⅱand the group grade Ⅲ . Multivariate analysis suggested that CTR and CT standard deviation were independent risk factors for identifying grade Ⅲ IAC, and the two were negatively correlated. Grade Ⅲ IAC exhibited advanced TNM staging, more pathological high-risk factors, higher lymph node metastasis rate, and higher proportion of advanced structure. CTR was positively correlated with the proportion of advanced structures in all patients. This correlation was also observed in grade Ⅲ but not in gradeⅠand grade ⅡIAC. CTR and CT median value were selected by using LASSO regression. Logistic regression, random forest, and XGBoost models were constructed and validated, among which, the XGBoost model demonstrated the best predictive performance. Conclusion Cautious consideration should be given to grade Ⅲ IAC when CTR is higher than 39.48% and CT standard deviation is less than 122.75 HU. The XGBoost model based on combined CTR and CT median value has good predictive efficacy for grade Ⅲ IAC, aiding clinicians in making personalized clinical decisions.
2. Effect of alisol A on cerebral ischemia reperfusion injury by protecting blood brain barrier and its mechanism
Yun-Fei DENG ; Hui-Hong LI ; Yang-Jie ZHOU ; Wei WEI ; Xie-Hua XUE ; Xie-Hua XUE ; Xie-Hua XUE
Chinese Pharmacological Bulletin 2024;40(1):83-90
Aim To investigate whether alisol A (AA) could improve the blood brain barrier (BBB) mediated cortex cerebral ischemia-repeifusion injury (CIRI) by inhibiting matrix metalloproteinase 9 (MMP-9). Methods The global cerebral ischemia- reperfusion (GCI/R) model in mice was established, and the AA was intragastric injected subsequently for seven days. The modified neurological severity scores (mNSS), open field test and Y-maze test were applied to detect neurological function. Magnetic resonance spectroscopy (MRS) was used to detect relevant neu- rosubstance metabolism in cortex of mice. Transmission electron microscope (TEM) was employed to observe the ultrastructure of BBB in cortex. Western blot and immunohistochemistry were used to detect the MMP-9 level in cortex. The binding possibility of A A and MMP-9 was determined by molecular docking. Results Compared with Sham group, mice in GCI/R group have an increased mNSS score but decreased at total distance and center distance to total distance ratio in open field test as well as alternation rate in Y-maze test (P<0.01). While mice in GCI/R + AA group have a decreased mNSS score but increased at total distance and center distance to total distance ratio in open field test as well as alternation rate in Y-maze test (P<0.01) compared with GCI/R group. MRS results found that in cortex of GCI/R group mice, the level of GABA and NAA significantly decreased while the Cho, mI and Tau level increased (P<0.01). Whereas in GCI/R + AA group mice, the GABA and NAA level increased and the Cho, ml and Tau decreased significantly (P<0.01). By TEM we observed that the basilemma of cerebral microvessels collapsed, the lumen narrowed, the endothelial cells were active and plasma membranes ruffled, gaps between cells were enlarged and tight junctions were damaged and the end feet of astrocytes were swollen in GCI/R group mice. While in GCI/R + AA group mice, the lumen was filled, plasma membranes of endothelial cells were smooth, tight junctions were complete and end feet of astrocytes were in normal condition. Western blot and immunohistochemistry both found that the MMP-9 level increased in GCI/R group mice (P < 0.01) and decreased in GCI/R + AA group mice (P < 0.05). Molecular docking proved the binding between aliso A and MMP9 through TYR-50 and ARG-106, and the binding energy was calculated as -6.24 kcal · mol
3. Mechanism of Fufang Congrong Yizhi Capsules in treatment of mild cognitive impairment based on network pharmacology
Qin HAN ; Xiao-Yu XU ; Yi-Fei GENG ; Xiao-Bo SUN ; Yun LUO ; Jing-Jing LIU
Chinese Pharmacological Bulletin 2024;40(2):334-343
Aim To predict the mechanism of Fufang Congrong Yizhi Capsules (FCYC) in the treatment of mild cognitive impairment (MCI) by network pharmacology method, and further validate it in combination with cellular experiments. Methods TCMSP, Gene-Cards, OMIM and TTD databases, Chinese Pharmacopoeia and related literature were used to screen the active ingredients of FCYC and the targets of MCI treatment. The TCM-compound-target-disease network and PPI of intersection targets were constructed, and the GO and KEGG analysis were performed by the Ehamb bioinformation platform. GO and KEGG analysis were performed through Yihanbo biological information platform. Cell model of MCI was established by PC-12 injury induced by Aβ
4.Identification of Phenolic Acid Derivatives in Danshen Using MS3 and MS2 Spectra Matching Strategy
Han LI ; Ke ZHANG ; Ting LI ; Wei CHEN ; Jun LI ; Peng-Fei TU ; Yun-Fang ZHAO ; Yue-Lin SONG
Chinese Journal of Analytical Chemistry 2024;52(2):267-276,中插19-中插27
"MS/MS spectrum to structure"plays a critical role in the confirmative identification of complicated matrices and is currently regarded as an extremely challenging endeavor.MS/MS information provides vital clues to structural identification.In this study,a strategy was proposed to facilitate unambiguous identification through matching MS3 with MS2 spectra.Initially,MS3 spectra of the featured ions(c-and y-type ions)generated by the decomposition of ester functional group in esters and the MS2 spectrum of the structural unit([M-H]-)were all captured on the Qtrap-MS platform equipped with two tandem-in-space collision cells,including the second quadrupole cell(q2)and linear ion trap(LIT)chambers(actually the third quadrupole unit).Subsequently,the MS/MS spectrum matching between MS3 spectra of the ester compound and MS2 spectra of the structural unit(s)were achieved.As a result,the findings corresponding to MS3 and MS2 spectra matching were summarized.Finally,based on HR-MS/MS information of total salvianolic acid derivatives(TSA),36 kinds of compounds were preliminarily identified through matching with literature information and database retrieval.The applicability of MS3 and MS2 spectra matching strategy was further justified by the confirmative identification of phenolic acid compounds(Rosmarinic acid and salvianolic acid B)in TSA.Above all,MS3 and MS2 spectra matching strategy was quite meaningful towards advancing"MS/MS spectrum to structure"analysis through recognizing and identifying featured fragment ions,and also provided inspiration and new insights for the structural characterization.
5.Toxicokinetics of MDMA and Its Metabolite MDA in Rats
Wei-Guang YU ; Qiang HE ; Zheng-Di WANG ; Cheng-Jun TIAN ; Jin-Kai WANG ; Qian ZHENG ; Fei REN ; Chao ZHANG ; You-Mei WANG ; Peng XU ; Zhi-Wen WEI ; Ke-Ming YUN
Journal of Forensic Medicine 2024;40(1):37-42
Objective To investigate the toxicokinetic differences of 3,4-methylenedioxy-N-methylamphetamine(MDMA)and its metabolite 4,5-methylene dioxy amphetamine(MDA)in rats af-ter single and continuous administration of MDMA,providing reference data for the forensic identifica-tion of MDMA.Methods A total of 24 rats in the single administration group were randomly divided into 5,10 and 20 mg/kg experimental groups and the control group,with 6 rats in each group.The ex-perimental group was given intraperitoneal injection of MDMA,and the control group was given intraperi-toneal injection of the same volume of normal saline as the experimental group.The amount of 0.5 mL blood was collected from the medial canthus 5 min,30 min,1 h,1.5 h,2 h,4 h,6 h,8 h,10 h,12 h after administration.In the continuous administration group,24 rats were randomly divided into the experi-mental group(18 rats)and the control group(6 rats).The experimental group was given MDMA 7 d by continuous intraperitoneal injection in increments of 5,7,9,11,13,15,17 mg/kg per day,respectively,while the control group was given the same volume of normal saline as the experimental group by in-traperitoneal injection.On the eighth day,the experimental rats were randomly divided into 5,10 and 20 mg/kg dose groups,with 6 rats in each group.MDMA was injected intraperitoneally,and the con-trol group was injected intraperitoneally with the same volume of normal saline as the experimental group.On the eighth day,0.5 mL of blood was taken from the medial canthus 5 min,30 min,1 h,1.5 h,2 h,4 h,6 h,8 h,10 h,12 h after administration.Liquid chromatography-triple quadrupole tandem mass spectrometry was used to detect MDMA and MDA levels,and statistical software was employed for data analysis.Results In the single-administration group,peak concentrations of MDMA and MDA were reached at 5 min and 1 h after administration,respectively,with the largest detection time limit of 12 h.In the continuous administration group,peak concentrations were reached at 30 min and 1.5 h af-ter administration,respectively,with the largest detection time limit of 10 h.Nonlinear fitting equations for the concentration ratio of MDMA and MDA in plasma and administration time in the single-administration group and continuous administration group were as follows:T=10.362C-1.183,R2=0.974 6;T=7.397 3C-0.694,R2=0.961 5(T:injection time;C:concentration ratio of MDMA to MDA in plasma).Conclusions The toxicokinetic data of MDMA and its metabolite MDA in rats,obtained through single and continuous administration,including peak concentration,peak time,detection time limit,and the relationship between concentration ratio and administration time,provide a theoretical and data foundation for relevant forensic identification.
6.Forensic Identification and Evaluation of 25 Obstetric Brachial Plexus Palsy Medical Damage Cases
Yong YU ; Ying-Jie WANG ; Yun-Fei JIA ; Bao-Jing HUANG ; Song-Yue HE ; Chuan-Chuan LIU
Journal of Forensic Medicine 2024;40(1):43-49
Objective To analyze the high risk factors of obstetric brachial plexus palsy(OBPP),and to explore how to evaluate the relationship between fault medical behavior and OBPP in the process of medical damage forensic identification.Methods A retrospective analysis was carried out on 25 cases of medical damage liability disputes related to OBPP from 2017 to 2021 in Beijing Fayuan Judicial Science Evidence Appraisal Center.The shortcomings of hospitals in birth weight assessment,delivery mode selection,labor process observation and shoulder dystocia management,and the causal relation-ship between them and the damage consequences of the children were summarized.Results Fault medi-cal behavior was assessed as the primary cause in 2 cases,equal cause in 10 cases,secondary cause in 8 cases,minor cause in 1 case,no causal relationship in 1 case,and unclear causal force in 3 cases.Conclusion In the process of forensic identification of OBPP,whether medical behaviors fulfill diagno-sis and treatment obligations should be objectively analyzed from the aspects of prenatal evaluation,de-livery mode notification,standardized use of oxytocin,standard operation of shoulder dystocia,etc.Meanwhile,it is necessary to fully consider the objective risk of different risk factors and the diffi-culty of injury prevention,and comprehensively evaluate the causal force of fault medical behavior in the damage consequences.
7.PRMT7 Regulates Adipogenic Differentiation of hBMSCs by Modulating IGF-1 Signaling
Qian GUO ; Jia QING ; Da-Zhuang LU ; Xu WANG ; Yang LI ; Hui ZHANG ; Ying-Fei ZHANG ; Yun-Song LIU ; Yong-Sheng ZHOU ; Ping ZHANG
Progress in Biochemistry and Biophysics 2024;51(6):1406-1417
ObjectiveProtein arginine methyltransferases (PRMTs) play pivotal roles in numerous cellular biological processes. However, the precise regulatory effects of PRMTs on the fate determination of mesenchymal stromal/stem cells (MSCs) remain elusive. Our previous studies have shed light on the regulatory role and molecular mechanism of PRMT5 in MSC osteogenic differentiation. This study aims to clarify the role and corresponding regulatory mechanism of PRMT7 during the adipogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Methods(1) Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured in a medium that induces adipogenesis. We used qRT-PCR and Western blot to monitor changes in PRMT7 expression during adipogenic differentiation. (2) We created a cell line with PRMT7 knocked down and assessed changes in PRMT7 expression and adipogenic capacity using Oil Red O staining, qRT-PCR and Western blot. (3) We implanted hBMSCs cell lines mixed with a collagen membrane subcutaneously into nude mice and performed Oil Red O staining to observe ectopic lipogenesis in vivo. (4) A cell line overexpressing PRMT7 was generated, and we examined changes in PRMT7 expression using qRT-PCR and Western blot. We also performed Oil Red O staining and quantitative analysis after inducing the cells in lipogenic medium. Additionally, we assessed changes in PPARγ expression. (5) We investigated changes in insulin-like growth factor 1 (IGF-1) expression in both PRMT7 knockdown and overexpressing cell lines using qRT-PCR and Western blot, to understand PRMT7’s regulatory effect on IGF-1 expression. siIGF-1 was transfected into the PRMT7 knockdown cell line to inhibit IGF-1 expression, and knockdown efficiency was confirmed. Then, we induced cells from the control and knockdown groups transfected with siIGF-1 in lipogenic medium and performed Oil Red O staining and quantitative analysis. Finally, we assessed PPARγ expression to explore IGF-1’s involvement in PRMT7’s regulation of adipogenic differentiation in hBMSCs. Results(1) During the adipogenesis process of hBMSCs, the expression level of PRMT7 was significantly reduced (P<0.01). (2) The adipogenic differentiation ability of PRMT7 knockdown group was significantly stronger than that of control group (P<0.001). (3) The ectopic adipogenic differentiation ability of PRMT7 knockdown group was significantly stronger than that of control group. (4) The adipogenic differentiation ability of the PRMT7 overexpression group was significantly weaker than that of the control group (P<0.01). (5) The expression level of IGF-1 increased after PRMT7 knockdown (P<0.000 1). The expression level of IGF-1 decreased after PRMT7 overexpression (P<0.000 1), indicating that PRMT7 regulates the expression of IGF-1. After siIGF-1 transfection, the expression level of IGF-1 in all cell lines decreased significantly (P<0.001). The ability of adipogenic differentiation of knockdown group transfected with siIGF-1 was significantly reduced (P<0.01), indicating that IGF-1 affects the regulation of PRMT7 on adipogenic differentiation of hBMSCs. ConclusionIn this investigation, our findings elucidate the inhibitory role of PRMT7 in the adipogenic differentiation of hBMSCs, as demonstrated through both in vitro cell-level experiments and in vivo subcutaneous transplantation experiments conducted in nude mice. Mechanistic exploration revealed that PRMT7’s regulatory effect on the adipogenic differentiation of hBMSCs operates via modulation of IGF-1 signaling pathway. These collective findings underscore PRMT7 as a potential therapeutic target for fatty metabolic disorders, thereby offering a novel avenue for leveraging PRMT7 and hBMSCs in the therapeutic landscape of relevant diseases.
8.New advances in stroke and cerebral embolism protection devices in transcatheter aortic valve replacement
Yun-Feng LI ; Shi-Qiang ZHOU ; Xi-De SHI ; Fei LI
Chinese Journal of Interventional Cardiology 2024;32(1):51-57
Stroke is one of the most serious complications of transcatheter aortic valve replacement(TAVR),tremendously increasing mortality and the loss of neurocognitive function.Since TAVR is expected to further spread into lower-risk patient groups,there will be greater emphasis to obviate such serious complications.One possible technique for preventing stroke is using cerebral embolic protection devices(CEPDs).CEPDs are designed for capturing or deflecting emboli that are enter route to the brain and hence to protect the brain from embolism.Since this is a rapidly growing field with recent advances,and the impact of CEPD on preventing neurological events is still limited,there is an urgent need for understanding the role of CEPD in preventing clinically significant strokes.Although their clinical utilization is increasing,the risk factors for stroke related to TAVR and evidence for using CEPDs are not yet clear.In this review,we present an overview of the available literature on TAVR related stroke and CEPD,and outline recent advances within this field.
9.Frontiers in in situ Cryo-electron Microscopy and Visual Proteomics
Kuan-Ying LI ; Wen-Xue WANG ; Yun ZHU ; Liang XUE ; Fei SUN
Progress in Biochemistry and Biophysics 2024;51(10):2456-2477
In recent years, with the continuous development of in situ cryo-electron microscopy (cryo-EM) and artificial intelligence (AI) technologies, the research of structural biology has undergone a paradigm shift. Structural analysis is no longer confined to isolated and purified biomolecules, and determination of high-resolution in situ structures directly within cells and tissues becomes feasible. Furthermore, structural analysis of the molecular landscapes of subcellular regions can be performed to gain a deeper understanding of the molecular mechanisms of living activities in the native functional context. Through determining in situ structures of various protein complexes within the cell, it is feasible to visualize the proteome with spatial and quantitative information, which is often referred to as visual proteomics. Emerging in situ structural methods represented by cryo-electron tomography (cryo-ET) hold the promise to elucidate the three-dimensional interaction networks of the intracellular proteome and understand their activities in a systematic manner. To advance in situ cryo-EM/ET and visual proteomics in China, this review summarizes the new research paradigms and technological advances, showcases the superiority of new concepts and technologies with representative examples, and discusses the future prospects in the field.
10.A novel chalcone derivative C13 inhibits the growth of human gastric cancer cells through suppressing ErbB4/PI3K/AKT signaling pathway
Peng TAN ; Yun-feng ZHANG ; Long-yan WANG ; Hui-ming HUANG ; Fei WANG ; Xue-jiao WEI ; Zhu-guo WANG ; Jun LI ; Zhong-dong HU
Acta Pharmaceutica Sinica 2024;59(4):957-964
3ʹ-Hydroxy-4ʹ-methoxy-2-hydroxy-5-bromochalcone (hereinafter referred to as C13) is a novel chalcone derivative obtained in the process of structural modification of DHMMF, the antitumor active compound of

Result Analysis
Print
Save
E-mail