1.Treatment response to nucleos(t)ide analogs in chronic hepatitis B with mildly elevated alanine aminotransferase: Letter to the editor on “Antiviral therapy for chronic hepatitis B with mildly elevated aminotransferase: A rollover study from the TORCH-B trial”
Jian WANG ; Fei CAO ; Chuanwu ZHU ; Chao WU ; Rui HUANG
Clinical and Molecular Hepatology 2025;31(2):e140-e142
2.Treatment response to nucleos(t)ide analogs in chronic hepatitis B with mildly elevated alanine aminotransferase: Letter to the editor on “Antiviral therapy for chronic hepatitis B with mildly elevated aminotransferase: A rollover study from the TORCH-B trial”
Jian WANG ; Fei CAO ; Chuanwu ZHU ; Chao WU ; Rui HUANG
Clinical and Molecular Hepatology 2025;31(2):e140-e142
3.Treatment response to nucleos(t)ide analogs in chronic hepatitis B with mildly elevated alanine aminotransferase: Letter to the editor on “Antiviral therapy for chronic hepatitis B with mildly elevated aminotransferase: A rollover study from the TORCH-B trial”
Jian WANG ; Fei CAO ; Chuanwu ZHU ; Chao WU ; Rui HUANG
Clinical and Molecular Hepatology 2025;31(2):e140-e142
4.Trilogy of drug repurposing for developing cancer and chemotherapy-induced heart failure co-therapy agent.
Xin CHEN ; Xianggang MU ; Lele DING ; Xi WANG ; Fei MAO ; Jinlian WEI ; Qian LIU ; Yixiang XU ; Shuaishuai NI ; Lijun JIA ; Jian LI
Acta Pharmaceutica Sinica B 2024;14(2):729-750
Chemotherapy-induced complications, particularly lethal cardiovascular diseases, pose significant challenges for cancer survivors. The intertwined adverse effects, brought by cancer and its complication, further complicate anticancer therapy and lead to diminished clinical outcomes. Simple supplementation of cardioprotective agents falls short in addressing these challenges. Developing bi-functional co-therapy agents provided another potential solution to consolidate the chemotherapy and reduce cardiac events simultaneously. Drug repurposing was naturally endowed with co-therapeutic potential of two indications, implying a unique chance in the development of bi-functional agents. Herein, we further proposed a novel "trilogy of drug repurposing" strategy that comprises function-based, target-focused, and scaffold-driven repurposing approaches, aiming to systematically elucidate the advantages of repurposed drugs in rationally developing bi-functional agent. Through function-based repurposing, a cardioprotective agent, carvedilol (CAR), was identified as a potential neddylation inhibitor to suppress lung cancer growth. Employing target-focused SAR studies and scaffold-driven drug design, we synthesized 44 CAR derivatives to achieve a balance between anticancer and cardioprotection. Remarkably, optimal derivative 43 displayed promising bi-functional effects, especially in various self-established heart failure mice models with and without tumor-bearing. Collectively, the present study validated the practicability of the "trilogy of drug repurposing" strategy in the development of bi-functional co-therapy agents.
5.Developmental toxicity of Cry1Ab protein in the embryonic stem-cell model
Yuanzhi JIAN ; Fei WANG ; Ning YIN ; Ruoyu ZHOU ; Junbo WANG
Journal of Peking University(Health Sciences) 2024;56(2):213-222
Objective:To evaluate the developmental toxicity of Cry1Ab protein by studying its effects on cell proliferation and differentiation ability using a developmental toxicity assessment model based on embryonic stem-cell.Methods:Cry1Ab protein was tested in seven dose groups(31.25,62.50,125.00,250.00,320.00,1 000.00,and 2 000.00 μg/L)on mouse embryonic stem cells D3(ES-D3)and 3T3 mouse fibroblast cells,with 5-fluorouracil(5-FU)used as the positive control and phos-phate buffer saline(PBS)as the solvent control.Cell viability was detected by CCK-8 assay to calculate the 50%inhibitory concentration(IC50)of the test substance for different cells.Additionally,Cry1 Ab protein was tested in five dose groups(125.00,250.00,320.00,1 000.00,and 2 000.00 μg/L)on ES-D3 cells,with PBS as the solvent control and 5-FU used for model validation.After cell treatment,cardiac differentiation was induced using the embryonic bodies(EBs)culture method.The growth of EBs was observed under a microscope,and their diameters on the third and fifth days were measured.The proportion of EBs differentiating into beating cardiomyocytes was recorded,and the 50%inhibition con-centration of differentiation(ID50)was calculated.Based on a developmental toxicity discrimination func-tion,the developmental toxicity of the test substances was classified.Furthermore,at the end of the cul-ture period,mRNA expression levels of cardiac differentiation-related markers(Oct3/4,GATAA-4,Nkx2.5,and β-MHC)were quantitatively detected using real-time quantitative polymerase chain reaction(qPCR)in the collected EBs samples.Results:The IC50 of 5-FU was determined as 46.37 μg/L in 3T3 cells and 32.67 μg/L in ES-D3 cells,while the ID50 in ES-D3 cells was 21.28 μg/L.According to the discrimination function results,5-FU was classified as a strong embryotoxic substance.There were no sta-tistically significant differences in cell viability between different concentrations of Cry 1 Ab protein treat-ment groups and the control group in both 3T3 cells and ES-D3 cells(P>0.05).Moreover,there were no statistically significant differences in the diameter of EBs on the third and fifth days,as well as their morphology,between the Cry1Ab protein treatment groups and the control group(P>0.05).The cardi-ac differentiation rate showed no statistically significant differences between different concentrations of Cry1Ab protein treatment groups and the control group(P>0.05).5-FU significantly reduced the mRNA expression levels of β-MHC,Nkx2.5,and GATA-4(P<0.05),showing a dose-dependent trend(P<0.05),while the mRNA expression levels of the pluripotency-associated marker Oct3/4 exhibited an increasing trend(P<0.05).However,there were no statistically significant differences in the mRNA expression levels of mature cardiac marker β-MHC,early cardiac differentiation marker Nkx2.5 and GATA-4,and pluripotency-associated marker Oct3/4 between the Cry1Ab protein treatment groups and the control group(P>0.05).Conclusion:No developmental toxicity of Cry1Ab protein at concen-trations ranging from 31.25 to 2 000.00 μg/L was observed in this experimental model.
6.Exploration of signaling pathways with unclear action status and possible effects on related diseases or functions after knockdown of silencing information regulator 1 gene in chondrocytes
Haiming YE ; Hui ZENG ; Qi YANG ; Geng ZHANG ; Jian WENG ; Fei YU
Chinese Journal of Tissue Engineering Research 2024;28(20):3123-3129
BACKGROUND:silencing information regulatory 1(SIRT1)regulates the function of related proteins in chondrocytes in a deacetylated manner and participates in chondrocyte proliferation and differentiation,thereby promoting cartilage defect repair. OBJECTIVE:To screen for signaling pathways with unclear action status after SIRT1 gene knockdown in chondrocytes,as well as diseases or functions that produce changes using high-throughput technology. METHODS:ATDC5 chondrocytes from mice in logarithmic growth phase were divided into two groups:the cells were transfected with SIRT1 gene knockdown negative control lentivirus in control group and SIRT1 gene knockdown lentivirus in experimental group.GeneChip? Mouse Genome 430 2.0 Array was used to detect the mRNA expression at 72 hours after transfection.Applied bioinformatics technology was also used to screen for unclear activation or inhibition signaling pathways and their related factors.Moreover,enrichment of disease or function modules was analyzed. RESULTS AND CONCLUSION:After knocking down the SIRT1 gene,there were 245 signaling pathways with unclear activation or inhibition status in the mouse ATDC5 chondrocytes.According to the ranking of-Log(P-value),we reported the factors in the top 20 signaling pathways with unclear activation or inhibition status,including IGFBP4,TGFBR1,CTGF,COL4A5,LHX2,IL1RL1,and KLF6.According to the ranking of-Log(P-value),there were significant changes in 14 disease or function modules,including cellular growth and proliferation,organism survival,cell death and survival.According to the number of differentially expressed genes,there were significant changes in three disease or function modules,including organismal injury and abnormalities,cancer,and cell death and survival.According to the comprehensive ranking of-Log(P-value)and the number of differentially expressed genes,the disease or function module related to intrinsic immune response was significantly activated.
7.Curcumin attenuates IL-1β-induced chondrocyte damage by modulating the DUSP1/p38 MAPK pathway
Fei Song ; Xuefei Fan ; Nannan Liu ; Suhuan Chen ; Min Jiang ; Guangyi Chen ; Wuqi Chen ; Xiaoyu Chen ; Jian Zhou
Acta Universitatis Medicinalis Anhui 2024;59(11):1903-1910
Objective:
To investigate the inhibitory effect of curcumin(Cur) on IL-1β-induced cartilage damage and to study the relationship between the regulatory mechanisms of the DUSP1/p38 MAPK signalling pathway in the above process.
Methods:
Chondrocytes(C28/I2) and postoperative primary chondrocytes from osteoarthritis patients were divided into control and experimental groups, and the experimental group was treated with different concentrations of Cur(0, 10, 20, 40, 60, 80 μmol/L) after applying the inflammatory induction treatment with IL-1β(10 μg/L). The cell proliferation inhibition rate was determined by cell viability assay(CCK-8), the apoptosis rate was detected by flow cytometry assay. Real-time fluorescence quantitative PCR(qRT-PCR), Western blot, and immunofluorescence assay were used to detect type II collagen α1 chain(Collagen Ⅱ), matrix metallopeptidase 13(MMP13), interleukin-1β(IL-1β), BCL2-related X protein(Bax), B lymphocytoma-2(Bcl-2), dual-specificity phosphatase 1(DUSP1), p38 mitogen-activated protein kinase(p38), and phosphorylated p38 mitogen-activated protein kinase(p-p38) RNA and protein expression levels. The role of the DUSP1/p38 MAPK axis in the inhibition of chondrocyte oxidative stress, apoptosis and inflammation by Cur was further validated using DUSP1 interfering RNA and p38 MAPK pathway inhibitor(SB).
Results:
Cur significantly inhibited the IL-1β-induced decrease in chondrocyte viability and significantly reduced the levels of oxidative stress, apoptosis, and inflammation in chondrocytes; Cur inhibited the expression of MMP13, IL-1β, Bax, and p-p38 proteins, while the expression of Collagen II, Bcl-2, and DUSP1 proteins significantly increased; IL-1β and interfering RNA silencing DUSP1 activated the p38 pathway, while Cur inhibited the activation of the p38 pathway; the use of p38 MAPK pathway inhibitors reduced cellular inflammation.
Conclusion
Cur attenuates IL-1β-induced oxidative stress, apoptosis and inflammation in chondrocytes by promoting the expression of DUSP1 protein and inhibiting the activation of p38 MAPK pathway.
8.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
9.An Enhancer LncRNA Regulates NFE2 Expression and Proliferation in Human Leukemic K562 Cells
Yan-Fei LU ; Song-Ya QU ; Jing-Jing ZHU ; Chao LIU ; Jian WANG ; Bing-She HAN ; Jun-Fang ZHANG
Progress in Biochemistry and Biophysics 2024;51(1):190-201
ObjectiveTranscription factor NFE2 was observed abnormal expression in myeloproliferative neoplasm (MPN) patients. However, how NFE2 is transcriptionally regulated remains ambiguous. This study aims to explore the elements and molecular mechanisms involved in the transcriptional regulation of NFE2. MethodsActive enhancers were predicted by public NGS data and conformed experimentally via dual luciferase reporter assay. After that, PRO-seq and GRO-seq data was used to detect enhancer RNAs transcribed from these enhancers. RACE was utilized to clone the full length enhancer RNA (eRNA) transcripts, and RT-qPCR was used to measure their expression in different leukemia cell lines as well as the transcript levels during induced differentiation. Finally, to investigate the molecular function of the eRNA, overexpression and knockdown of the eRNA via lentivirus system was performed in K562 cells. ResultsWe identified three enhancers regulating NFE2 transcription, which located at -3.6k, -6.2k and +6.3k from NFE2 transcription start site (TSS) respectively. At the -3.6k enhancer, we cloned an eRNA transcript and characterized that as a lncRNA which was expressed and located in the nucleus in three types of leukemia cell lines. When this lncRNA was overexpressed, expression of NFE2 was upregulated and decreases of K562 cell proliferation and migration ability were observed. While knocking down of this lncRNA, the level of NFE2 decreases correspondingly and the proliferation ability of K562 cells increases accordingly. ConclusionWe identified an enhancer lncRNA that regulates NFE2 transcription positively and suppresses K562 cell proliferation.
10.Clinical trial of montelukast sodium combined with terbutaline in the treatment of children with cough variant asthma
Jian-Fei CHEN ; Qiao-Bo ZHU ; Dong-Liang SHAO ; Xiao-Yi JI
The Chinese Journal of Clinical Pharmacology 2024;40(15):2155-2159
Objective To observe the application effect of montelukast sodium combined with terbutaline on cough variant asthma(CVA)in children and its influence on airway remodeling and peripheral blood inflammatory indicators.Methods The children with CVA were randomly classified into control group and treatment group.The control group was given aerosol inhalation of terbutaline(5 mg each time,twice a day),and on the basis of the control group,the treatment group was combined with oral administration of montelukast sodium granules(4 mg each time,once a day,taking before going to bed),and both groups were continuously treated for 3 months.The clinical efficacy,airway cross-section area(AO),airway lumen area(AI),airway wall thickness(T),airway wall area(WA),serum interleukin-5(IL-5),eosinophilic chemotactic factor(Eotaxin),macrophage inflammatory protein-1α(MIP-1α)and T lymphocyte subgroups CD4+,CD8+and CD4+/CD8+were compared between the two groups of children,and the medication safety was assessed.Results Fifty-three cases in control group and 53 cases in treatment group were included.After treatment,the total effective rates in treatment group and control group were 96.23%(51 cases/53 cases)and 83.02%(44 cases/53 cases),respectively(P<0.05).The AO values in treatment group and control group were(39.42±3.67)and(45.69±4.92)mm2;AI values were(22.36±2.85)and(27.06±3.18)mm2;T values were(1.12±0.28)and(1.44±0.33)mm;WA values were(53.82±4.17)and(60.13±4.66)mm2;serum IL-5 levels were(25.46±5.83)and(41.46±7.64)ng·L-1;Eotaxin levels were(181.24±30.05)and(238.21±39.42)ng·L-1;MIP-1a levels were(15.24±3.67)and(22.43±4.05)ng·L-1;CD4+levels were(37.18±4.06)%and(33.57±3.82)%;CD8+levels were(24.08±3.15)%and(27.31±3.07)%;and CD4+/CD8+levels were 1.54±0.33 and 1.24±0.28,respectively(all P<0.05).The total incidences of adverse drug reactions in treatment group and control group were 9.43%(5 cases/53 cases)and 3.77%(2 cases/53 cases),respectively(P>0.05).Conclusion Montelukast sodium combined with terbutaline has an exact efficacy in the treatment of CVA in children,and it can effectively reverse airway remodeling,reduce inflammation level and enhance immune function,and it has good safety.


Result Analysis
Print
Save
E-mail