1.Levels of L-carnitine in human seminal plasma are associated with sperm fatty acid composition.
Mario ILICETO ; Mette Haug STENSEN ; Jorunn M ANDERSEN ; Trine B HAUGEN ; Oliwia WITCZAK
Asian Journal of Andrology 2022;24(5):451-457
The fatty acid composition of spermatozoa has been shown to be important for their function, and L-carnitine is crucial for fatty acid metabolism. Its levels in the seminal plasma positively correlate with semen quality, whereas high body mass index (BMI) is associated with both reduced semen quality and altered sperm fatty acid composition. Here, we examined the associations between free seminal L-carnitine levels and sperm fatty acid composition as well as BMI. Semen samples were collected and analyzed from 128 men with unknown fertility status and with BMI ranging from 19 kg m-2 to 63 kg m-2. Sperm fatty acid composition was assessed by gas chromatography, while free seminal L-carnitine analysis was performed using high-performance liquid chromatography. Multiple linear regression analysis showed a positive correlation of free seminal L-carnitine levels with the amount of sperm palmitic acid (β = 0.21; P = 0.014), docosahexaenoic acid (DHA; β = 0.23; P = 0.007), and total n-3 polyunsaturated fatty acids (β = 0.23; P = 0.008) and a negative correlation of free seminal L-carnitine levels with lignoceric acid (β = -0.29; P = 0.001) and total n-6 polyunsaturated fatty acids (β = -0.24; P = 0.012) when adjusted for covariates. There was no relationship between free seminal L-carnitine levels and BMI. Since free seminal L-carnitine levels are associated with semen quality, the absence of a correlation with BMI suggests that reduced semen quality in obese men is independent of seminal L-carnitine.
Carnitine
;
Docosahexaenoic Acids
;
Fatty Acids
;
Humans
;
Male
;
Semen
;
Semen Analysis
;
Sperm Count
;
Sperm Motility
;
Spermatozoa
2.Association of fatty acid composition in human milk with breast milk jaundice in neonates.
Li-Fei YANG ; Jing LI ; Rui HU ; Li-Qing XU ; Ya-Xuan LI ; Wang-Tao SHENG
Chinese Journal of Contemporary Pediatrics 2020;22(12):1256-1260
OBJECTIVE:
To study the association of fatty acid composition in human milk with breast milk jaundice (BMJ) in neonates.
METHODS:
A total of 30 full-term neonates who were admitted to the neonatal intensive care unit from October 2016 to October 2017 and were diagnosed with late-onset BMJ were enrolled as the BMJ group. Thirty healthy neonates without jaundice or pathological jaundice who were admitted to the confinement center during the same period of time were enrolled as the control group. Related clinical data were collected, including sex, mode of birth, feeding pattern, gestational age, birth weight, gravida, parity, and peak level of total serum bilirubin. Breast milk was collected from the mothers, and the MIRIS human milk analyzer was used to measure macronutrients (fat, protein, and carbohydrate) and calorie. Gas chromatography was used to analyze the content of different fatty acids in breast milk.
RESULTS:
The control group had higher levels of macronutrients in human milk than the BMJ group, with significant differences in fat, dry matter, and calorie (
CONCLUSIONS
Some macronutrients and fatty acid composition in human milk may be associated with the pathogenesis of BMJ in neonates.
Case-Control Studies
;
Fatty Acids/analysis*
;
Female
;
Humans
;
Infant, Newborn
;
Jaundice, Neonatal/etiology*
;
Milk, Human/chemistry*
;
Nutrients/analysis*
;
Pregnancy
3.New observations on the effect of camellia oil on fatty liver disease in rats.
Journal of Zhejiang University. Science. B 2020;21(8):657-667
Camellia oil has become an important plant oil in China in recent years, but its effects on non-alcoholic fatty liver disease (NAFLD) have not been documented. In this study, the effects of camellia oil, soybean oil, and olive oil on NAFLD were evaluated by analyzing the fatty acid profiles of the plant oils, the serum lipids and lipoproteins of rats fed different oils, and by cytological and ultrastructural observation of the rats' hepatocytes. Analysis of fatty acid profiles showed that the polyunsaturated fatty acid (PUFA) n-6/n-3 ratio was 33.33 in camellia oil, 12.50 in olive oil, and 7.69 in soybean oil. Analyses of serum lipids and lipoproteins of rats showed that the levels of total cholesterol and low-density lipoprotein cholesterol in a camellia oil-fed group (COFG) were lower than those in an olive oil-fed group (OOFG) and higher than those in a soybean oil-fed group (SOFG). However, only the difference in total cholesterol between the COFG and SOFG was statistically significant. Cytological observation showed that the degree of lipid droplet (LD) accumulation in the hepatocytes in the COFG was lower than that in the OOFG, but higher than that in the SOFG. Ultrastructural analysis revealed that the size and number of the LDs in the hepatocytes of rats fed each of the three types of oil were related to the degree of damage to organelles, including the positions of nuclei and the integrity of mitochondria and endoplasmic reticulum. The results revealed that the effect of camellia oil on NAFLD in rats was greater than that of soybean oil, but less than that of olive oil. Although the overall trend was that among the three oil diets, those with a lower n-6/n-3 ratio were associated with a lower risk of NAFLD, and the effect of camellia oil on NAFLD was not entirely related to the n-6/n-3 ratio and may have involved other factors. This provides new insights into the effect of oil diets on NAFLD.
Animals
;
Camellia/chemistry*
;
Fatty Acids/analysis*
;
Hepatocytes/ultrastructure*
;
Lipid Droplets/physiology*
;
Lipids/blood*
;
Male
;
Non-alcoholic Fatty Liver Disease/pathology*
;
Plant Oils/administration & dosage*
;
Rats
;
Rats, Sprague-Dawley
4.Neurocognitive Functions in Infants with Malnutrition; Relation with Long-chain Polyunsaturated Fatty Acids, Micronutrients Levels and Magnetic Resonance Spectroscopy
Murat CAKIR ; Sukran SENYUVA ; Sibel KUL ; Elif SAG ; Ali CANSU ; Fulya Balaban YUCESAN ; Serap Ozer YAMAN ; Asim OREM
Pediatric Gastroenterology, Hepatology & Nutrition 2019;22(2):171-180
PURPOSE: Malnutrition may influence neurocognitive development in children by directly affecting the brain structural development, or indirectly by affecting the children's cognition experience. Malnutrition alters the cell numbers, cell migration, synaptogenesis, and neurotransmission due to inadequate availability of necessary micronutrients to support cell growth. We aimed to analyze neurocognitive development in infants with malnutrition and its association with long chain polyunsaturated fatty acids (LC-PUFA), micronutrients levels and magnetic resonance spectroscopy (MRS) findings. METHODS: The study included two groups; group 1, infants with malnutrition (n=24), group 2; healthy infants (n=21). Peripheral blood was obtained from the participants for studying micronutrients and LC-PUFA levels. The neurocognitive development was analyzed by the use of an Ankara Developmental Screening Inventory test. MRS were performed on all infants. RESULTS: All parameters of neurocognitive development and serum calcium (9.6±0.9 mg/dL vs. 10.4±0.3 mg/dL, p < 0.05) and magnesium (2.02±0.27 mg/dL vs. 2.2±0.14 mg/dL, p < 0.05) levels were noted as being low in infants with marked malnutrition. No difference was found in LC-PUFA levels between healthy and malnourished infants. Thalamic choline/creatine levels were significantly high in infants with malnutrition (1.33±0.22 vs. 1.18±0.22, p < 0.05). Total neurocognitive development in infants was positively correlated with serum calcium levels (p < 0.05, r=0.381). CONCLUSION: Calcium supplementation may improve neurocognitive development in malnourished infants.
Brain
;
Calcium
;
Cell Count
;
Cell Movement
;
Child
;
Cognition
;
Fatty Acids, Unsaturated
;
Humans
;
Infant
;
Magnesium
;
Magnetic Resonance Spectroscopy
;
Malnutrition
;
Mass Screening
;
Micronutrients
;
Spectrum Analysis
;
Synaptic Transmission
5.Persistently Upregulated Hippocampal mTOR Signals Mediated by Fecal SCFAs Impair Memory in Male Pups with SMM Exposure in Utero.
Yi Tian ZHU ; Xin Ji LIU ; Kai Yong LIU ; Qiang ZHANG ; Lin Sheng YANG ; Rong WEI ; Jing Jing ZHANG ; Fang Biao TAO
Biomedical and Environmental Sciences 2019;32(5):345-356
OBJECTIVE:
To investigate the molecular mechanisms of the adverse effects of exposure to sulfamonomethoxin (SMM) in pregnancy on the neurobehavioral development of male offspring.
METHODS:
Pregnant mice were randomly divided into four groups: control- (normal saline), low- [10 mg/(kg•day)], middle- [50 mg/(kg•day)], and high-dose [200 mg/(kg•day)] groups, which received SMM by gavage daily during gestational days 1-18. We measured the levels of short-chain fatty acids (SCFAs) in feces from dams and male pups. Furthermore, we analyzed the mRNA and protein levels of genes involved in the mammalian target of rapamycin (mTOR) pathway in the hippocampus of male pups by RT-PCR or Western blotting.
RESULTS:
Fecal SCFA concentrations were significantly decreased in dams. Moreover, the production of individual fecal SCFAs was unbalanced, with a tendency for an increased level of total fecal SCFAs in male pups on postnatal day (PND) 22 and 56. Furthermore, the phosphatidylinositol 3-kinase (PI3k)/protein kinase B (AKT)/mTOR or mTOR/ribosomal protein S6 kinase 1 (S6K1)/4EBP1 signaling pathway was continuously upregulated until PND 56 in male offspring. In addition, the expression of Sepiapterin Reductase (SPR), a potential target of mTOR, was inhibited.
CONCLUSION
In utero exposure to SMM, persistent upregulation of the hippocampal mTOR pathway related to dysfunction of the gut (SCFA)-brain axis may contribute to cognitive deficits in male offspring.
Alcohol Oxidoreductases
;
metabolism
;
Animals
;
Anti-Infective Agents
;
toxicity
;
Fatty Acids, Volatile
;
analysis
;
Feces
;
chemistry
;
Female
;
Hippocampus
;
drug effects
;
metabolism
;
Male
;
Memory
;
drug effects
;
Mice, Inbred ICR
;
Pregnancy
;
Prenatal Exposure Delayed Effects
;
Sulfamonomethoxine
;
toxicity
;
TOR Serine-Threonine Kinases
;
metabolism
6.Assessment of selenium and zinc status in female collegiate athletes.
Journal of Nutrition and Health 2018;51(2):121-131
PURPOSE: This study was aimed to assess selenium and zinc status in female collegiate athletes and their relationship with dietary intake. METHODS: Female collegiate athletic groups of judo and aerobics, and healthy sedentary collegiate females were recruited for this study and their serum selenium and zinc contents were measured by the neutron activation analysis (NAA) method. In addition, the dietary intake of subjects was measured using the two days 24-hour recall method. RESULTS: Serum selenium in judo athletes was 10.7 µg/dl, which was significantly lower than that of aerobic athletes (12.2 µg/dl), but not different from that of the sedentary group (11.4 µg/dl). Additionally, serum zinc levels were 96.1 µg/dl and 90.2 µg/dl in aerobic and judo athletes, respectively, which did not differ significantly. Moreover, dietary selenium and zinc intake of the athletic groups did not differ significantly from that of the sedentary female group. Overall, 33.3% of the serum selenium concentration variation was explained by the intake of vitamin E, selenium and saturated fatty acids, while 14.7% of the serum zinc level variation was explained by the intake of saturated fatty acids. The strongest dietary indicator for serum selenium and zinc levels was saturated fatty acids intake. CONCLUSION: Judo athletes appear to have lower selenium status than aerobic athletes, suggesting different body selenium status according to sport type. To maintain body selenium and zinc levels, the dietary intake of saturated fatty acids should be decreased.
Athletes*
;
Fatty Acids
;
Female*
;
Humans
;
Martial Arts
;
Methods
;
Neutron Activation Analysis
;
Selenium*
;
Sports
;
Vitamin E
;
Vitamins
;
Zinc*
7.Research on influence of environment factors to yield and quality traits of Perilla frutescen.
Qi SHEN ; Ji-Xian ZHAO ; Xue-Bo QIU ; Zhi-Wei SHANG ; Xian-Ping WANG ; Sen YANG ; Jing XU ; Shi-Lin CHEN
China Journal of Chinese Materia Medica 2018;43(20):4033-4043
The research is aimed to study of the influence of environmental factors on the yield and quality traits, and find out the regularity of the growth and development of perilla. The main environmental factor data in six ecological area in Guizhou province were collected, and the correlation analysis with yield and quality traits of 15 perilla strains was conducted. The results showed that the cultivation environment has significant effects on the yield and quality traits of perilla. The effect of environment on main yield composed traits, contained grain number in top spike, effective panicle number per plant, plant height, top spike length, growth period, and thousand seed weight was degressive. In the different environmental factors, the latitude showed positive correlation with yield, growth period and effective panicle number per plant, and negative correlation with top spike length and grain number in top spike. Elevation showed negative correlation with the growth period of perilla. The perilla yield increased at first and then decreased with altitude rising, with the maximum in the 800 m altitude. The 600-900 m altitude is suitable area for perilla. Except for positive correlation with the plant height, and negative correlation with top spike length, the longitude showed in apparent impact on other traits. Sunshine duration, temperature and rainfall accumulation showed different effect on the different perilla strains. For yield composed traits, the sunshine duration was negatively correlation with the plant length. The accumulated temperature and mean temperature showed negative correlation with the main spike length, the rainfall showed negative correlation with the precipitation and growth period, plant height, ear number. The environmental impact on the oil compounds decreased with oleic acid, stearic acid, linoleic acid, -linolenic acid, palmitic acid and oil content. Correlation analysis showed that the significantly negative correlation between the oil content and palmitic acid and linoleic acid content, and the positive correlation between linolenic acid content, -linolenic acid content showed significant negative correlation with other fatty acids composition, and palmitic acid, stearic acid, oleic acid, linoleic acid showed significant positive correlation with each other. The influence of different environmental factors on the quality of perilla were as follows: the oil content was positively associated with elevation and sunshine duration. -Linolenic acid content showed negative correlation with longitude, latitude, accumulated temperature and mean temperature, but positive correlation with altitude, sunlight and rainfall capacity. The correlation between palmitic acid, stearic acid, oleic acid, linoleic acid and environmental factors showed contrast character of -linolenic acid. This study detailed discussed the influence of environmental factors on the quality of perilla, which provided the foundation of ecological planting technology and geoherbalism research of perilla.
Environment
;
Fatty Acids
;
analysis
;
Perilla frutescens
;
chemistry
;
growth & development
;
Phytochemicals
;
analysis
;
Plant Oils
;
analysis
8.Anti-senescence effect and molecular mechanism of the major royal jelly proteins on human embryonic lung fibroblast (HFL-I) cell line.
Chen-Min JIANG ; Xin LIU ; Chun-Xue LI ; Hao-Cheng QIAN ; Di CHEN ; Chao-Qiang LAI ; Li-Rong SHEN
Journal of Zhejiang University. Science. B 2018;19(12):960-972
Royal jelly (RJ) from honeybee has been widely used as a health promotion supplement. The major royal jelly proteins (MRJPs) have been identified as the functional component of RJ. However, the question of whether MRJPs have anti-senescence activity for human cells remains. Human embryonic lung fibroblast (HFL-I) cells were cultured in media containing no MRJPs (A), MRJPs at 0.1 mg/ml (B), 0.2 mg/ml (C), or 0.3 mg/ml (D), or bovine serum albumin (BSA) at 0.2 mg/ml (E). The mean population doubling levels of cells in media B, C, D, and E were increased by 12.4%, 31.2%, 24.0%, and 10.4%, respectively, compared with that in medium A. The cells in medium C also exhibited the highest relative proliferation activity, the lowest senescence, and the longest telomeres. Moreover, MRJPs up-regulated the expression of superoxide dismutase-1 (SOD1) and down-regulated the expression of mammalian target of rapamycin (MTOR), catenin beta like-1 (CTNNB1), and tumor protein p53 (TP53). Raman spectra analysis showed that there were two unique bands related to DNA synthesis materials, amide carbonyl group vibrations and aromatic hydrogens. These results suggest that MRJPs possess anti-senescence activity for the HFL-I cell line, and provide new knowledge illustrating the molecular mechanism of MRJPs as anti-senescence factors.
Animals
;
Bees
;
Cattle
;
Cell Line
;
Cell Proliferation
;
Cellular Senescence/drug effects*
;
Culture Media
;
Dose-Response Relationship, Drug
;
Fatty Acids/chemistry*
;
Fibroblasts/drug effects*
;
Humans
;
Insect Proteins/chemistry*
;
Lung/drug effects*
;
Serum Albumin/metabolism*
;
Spectrum Analysis, Raman
;
Superoxide Dismutase-1/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Tumor Suppressor Protein p53/metabolism*
;
beta Catenin/metabolism*
9.Signature Genes in Macrodactyly through Transcriptome Network Analysis Reveal their Association of Lipid Metabolism.
Jeong Woo CHOI ; Hyun Joo LEE ; Ji Won OH
Korean Journal of Physical Anthropology 2017;30(3):77-85
Macrodactyly is one of the most difficult hand anomalies to treat not only surgically but medically as well. Little is known about the molecular pathways and lipid metabolism of this disease. To elucidate the potential mechanism of macrodactyly progress, we used the bioinformatical analysis including quantile normalization, principal component analysis, heatmap and volcano plot. For the functional bioinformatical study, lipid, lipoprotein and phospholipid metabolism of Kyoto Encyclopedia of Genes and Genomes, Wiki Pathways, and Reactome Pathway were utilized to compare the differentially expressed genes in macrodactyly with control group. We found up-regulation of CDK6 and E2F1, which are associated with the mitotic cell cycle of cancer cells. PIK3CG, associated with cancer and lipid metabolism, was also enriched in macrodactyly. In down-regulated genes, PTEN was highlighted in lipid metabolism, phosphatidylinositol signaling system and insulin signaling. ABCD3, related in peroxisomal import of fatty acids, was also down-regulated. In this study, we predicted the pathogenic candidate genes as well as the potential molecular pathways related to macrodactyly by identifying the signature genes. Signature genes through systems bioinformatical analysis can be utilized to catch the insight of the molecular pathogenesis of macrodactyly.
Cell Cycle
;
Computational Biology
;
Fatty Acids
;
Genome
;
Gigantism
;
Hand
;
Insulin
;
Lipid Metabolism*
;
Lipoproteins
;
Metabolism
;
Phosphatidylinositols
;
Principal Component Analysis
;
Transcriptome*
;
Up-Regulation
10.Metabolomics Approach to Explore the Effects of Rebamipide on Inflammatory Arthritis Using Ultra Performance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry.
Su Jin MOON ; Soo Hyun LEE ; Byung Hwa JUNG ; Jun Ki MIN
Journal of Rheumatic Diseases 2017;24(4):192-202
OBJECTIVE: Rebampide is a gastroprotective agent used to treat gastritis. It possesses anti-inflammatory and anti-arthritis effects, but the mechanisms of these effects are not well understood. The objective of this study was to explore mechanisms underlying the therapeutic effects of rebamipide in inflammatory arthritis. METHODS: Collagen-induced arthritis (CIA) was induced in DBA/1J mice. DBA/1J mice were immunized with chicken type II collagen, then treated intraperitoneally with rebamipide (10 mg/kg or 30 mg/kg) or vehicle (10% carboxymethylcellulose solution) alone. Seven weeks later, plasma samples were collected. Plasma metabolic profiles were analyzed using ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry-based metabolomics study and metabolite biomarkers were identified through multivariate data analysis. RESULTS: Low dose rebamipide treatment reduced the clinical arthritis score compared with vehicle treatment, whereas high dose rebamipide in CIA aggravated arthritis severity. Based on multivariate analysis, 17 metabolites were identified. The plasma levels of metabolites associated with fatty acids and phospholipid metabolism were significantly lower with rebamipide treatment than with vehicle. The levels of 15-deoxy-Δ¹²,¹⁴ prostaglandin J2 and thromboxane B3 decreased only in high dose-treated groups. Certain peptide molecules, including enterostatin (VPDPR) enterostatin and bradykinin dramatically increased in rebamipide-treated groups at both doses. Additionally, corticosterone increased in the low dose-treated group and decreased in the high dose-treated group. CONCLUSION: Metabolomics analysis revealed the anti-inflammatory effects of rebamipide and suggested the potential of the drug repositioning in metabolism- and lipid-associated diseases.
Animals
;
Arthritis*
;
Arthritis, Experimental
;
Biomarkers
;
Bradykinin
;
Carboxymethylcellulose Sodium
;
Chickens
;
Collagen Type II
;
Corticosterone
;
Drug Repositioning
;
Fatty Acids
;
Gastritis
;
Mass Spectrometry*
;
Metabolism
;
Metabolome
;
Metabolomics*
;
Mice
;
Multivariate Analysis
;
Plasma
;
Statistics as Topic
;
Therapeutic Uses

Result Analysis
Print
Save
E-mail