1.Dimethyl fumarate alleviates DEHP-induced intrahepatic cholestasis in maternal rats during pregnancy through NF-κB/NLRP3 signaling pathway
Yue Jiang ; Yun Yu ; Lun Zhang ; Qianqian Huang ; Wenkang Tao ; Mengzhen Hou ; Fang Xie ; Xutao Ling ; Jianqing Wang
Acta Universitatis Medicinalis Anhui 2025;60(1):117-123
Objective :
To investigate the protective effect of dimethyl fumarate(DMF) on maternal intrahepatic cholestasis(ICP) during pregnancy induced by di(2-ethylhexyl) phthalate(DEHP) exposure and its mechanism.
Methods :
Thirty-two 8-week-old female institute of cancer research(ICR) mice were randomly divided into 4 groups: Ctrl group, DEHP group, DMF group and DEHP+DMF group. DEHP and DEHP+DMF groups were treated with DEHP(200 mg/kg) by gavage every morning at 9:00 a.m. DMF and DEHP+DMF groups were treated with DMF(150 mg/kg) from day 13 to day 16 of gestation by gavage. After completion of gavage on day 16 of pregnancy, maternal blood, maternal liver, placenta, and amniotic fluid were collected from pregnant mice after a six-hour abrosia. The body weight of the mother rats and the body weight of the fetus rats were sorted and analyzed; the levels of total bile acid(TBA), alkaline phosphatase(ALP), aspartate aminotransferase/alanine aminotransferase(AST/ALT) in serum and TBA in liver, amniotic fluid and placenta were detected by biochemical analyzer; HE staining was used to observe the pathological changes of liver tissue; Quantitative reverse transcription PCR(RT-qPCR) was used to detect the expression levels of tumor necrosis factor-α(TNF-α), interleukin(IL)-6, IL-1, IL-18 and NOD-like receptor thermal protein domain associated protein 3(NLRP3) in the liver; Western blot was used to detect the expression of the nuclear factor KappaB(NF-κB) and NLRP3.
Results :
Compared with the control group, the body weight of the DEHP-treated dams and pups decreased(P<0.05); the levels of TBA, ALP, AST/ALT in the serum of dams and the levels of TBA in the liver, amniotic fluid, and placenta of dams increased(P<0.05); the histopathological results showed that liver tissue was damaged, bile ducts were deformed, and there was inflammatory cell infiltration around them; the levels of inflammation-related factors TNF-α, IL-6, IL-1, IL-18 and NLRP3 transcription in maternal liver increased(P<0.05); the expression of NF-κB and NLRP3 protein in maternal liver significantly increased( P<0. 05). Compared with the DEHP group,the body weight of both dams and fetuses significantly increased in DEHP + DMF group( P<0. 05); the levels of TBA,ALP,AST/ALT in the serum of dams and amniotic fluid of fetuses decreased( P<0. 05); the degree of liver lesions was improved; the transcription levels of inflammation-related factors TNF-α,IL-6,IL-1,IL-18 and NLRP3 in maternal liver decreased( P<0. 05); the expression of NF-κB and NLRP3 protein in maternal liver significantly decreased( P<0. 05).
Conclusion
DMF can effectively protect the DEHP exposure to lead to female ICP,and its mechanism may be through inhibiting the NF-κB/NLRP3 pathway and reducing liver inflammation.
2.Analysis of The Application and Prospects of CRISPR-based RNA Detection Technology in Forensic Science
Yun FANG ; Xian-Miao WANG ; Wei XIE ; Qi-Fan SUN
Progress in Biochemistry and Biophysics 2025;52(10):2602-2613
The emergence of clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated proteins (Cas) system represents a revolutionary paradigm shift in molecular diagnostics, offering transformative potential for RNA analysis within the rigorous demands of forensic science. Conventional forensic RNA detection methodologies, such as reverse transcription-quantitative polymerase chain reaction (RT-qPCR) or microarray analysis, are significantly hampered by inherent limitations including complex, multi-step protocols requiring sophisticated laboratory infrastructure, pronounced susceptibility to inhibitors prevalent in complex forensic matrices (e.g., humic acids, heme, indigo dyes), and often inadequate sensitivity for trace or degraded samples typical of crime scenes, thereby failing to meet the critical operational imperatives of forensic practice: rapidity, high specificity, sensitivity, portability, and robustness against interference. This review posits that CRISPR-Cas-based RNA detection technology provides a groundbreaking solution by leveraging the programmable, sequence-specific recognition conferred by the synergistic interaction between a designed guide RNA (gRNA) and Cas effector proteins (e.g., Cas12a, Cas13a, Cas14). Upon target RNA binding, specific Cas enzymes undergo conformational activation, exhibiting collateral cleavage activity―a unique catalytic amplification mechanism where the enzyme non-specifically cleaves surrounding reporter molecules, enabling ultra-high sensitivity. To further enhance detection limits, CRISPR-Cas systems are strategically integrated with isothermal pre-amplification techniques like recombinase polymerase amplification (RPA) or loop-mediated isothermal amplification (LAMP), which efficiently amplify target RNA at constant temperatures, eliminating the need for thermal cyclers. This powerful cascade―isothermal pre-amplification followed by CRISPR-mediated sequence-specific recognition and collateral signal amplification―achieves exceptional sensitivity, often down to the single-molecule (attomolar) level, while drastically reducing analysis time to potentially 30-60 min. Crucially, the compatibility of CRISPR-Cas detection with simple, equipment-free readout systems, such as lateral flow strips (LFS) for visual colorimetric results or portable fluorescence/electrochemical sensors, facilitates true point-of-need (PON) forensic analysis directly at crime scenes, morgues, or field labs. This enables rapid applications like specific body fluid identification (e.g., distinguishing menstrual blood via miRNA, identifying saliva via mRNA), post-mortem interval (PMI) estimation through RNA degradation/expression patterns, donor age inference via age-related RNA markers, tissue identification, and microbial forensics, thereby accelerating investigative leads, minimizing sample degradation risks, and optimizing resource allocation. However, significant challenges impede widespread adoption, including persistent environmental interference inhibiting enzymes, fluctuations in Cas/amplification enzyme activity affecting reproducibility, a critical lack of standardized protocols and validated quality assurance/quality control (QA/QC) frameworks essential for forensic reliability and court admissibility, and current limitations in multiplex detection capability. Consequently, future research must prioritize overcoming multiplexing bottlenecks for comprehensive analysis, enhancing system robustness through Cas protein engineering and optimized reagents, developing fully integrated, sample-to-answer microfluidic or lateral flow devices for user-friendly field deployment, and collaboratively establishing universally accepted validation guidelines, performance standards, and stringent QA/QC procedures. Furthermore, the urgent development of clear ethical guidelines governing the use of this highly sensitive technology, particularly concerning RNA data privacy and potential misuse, is imperative. This review systematically outlines the principles, forensic applications, current limitations, and future trajectories of CRISPR-RNA detection, with the authors’ conviction that focused efforts addressing these challenges will translate this technology into a cornerstone of next-generation forensic practice, driving unprecedented efficiency and innovation in field investigations and laboratory analysis to enhance justice delivery.
3.Spatial transcriptomic analysis deciphers adipocyte-to-fibroblast transformation in bleomycin-induced murine skin fibrosis
Yixiang ZHANG ; Jiahao HE ; Fangzhou XIE ; Shengzhou SHAN ; Jiaqi QIN ; Chuandong WANG ; Qingfeng LI ; Yun XIE ; Bin FANG
Chinese Medical Journal 2024;137(22):2745-2757
Background::Scleroderma is characterized by inflammation and fibrosis, predominantly occurring in the skin and extending to various parts of the body. The pathophysiology of scleroderma is multifaceted, with the current understanding including endothelial damage, inflammatory cell infiltration, and fibroblast activation in its progression. Nonetheless, the mechanism of cellular interactions and the precise spatial distribution of these cellular events within the fibrotic tissues remain elusive, highlighting a critical gap in our comprehensive understanding of scleroderma’s pathogenesis.Methods::In this study, we administered bleomycin intradermally to the dorsal skin of four individual murine models. Subsequently, skin tissues were harvested at predetermined intervals for comprehensive spatial transcriptomic analysis to determine the spatial dynamics influencing scleroderma pathogenesis. To validate the possible results from bioinformatic analysis, further in vitro and in vivo experiments were conducted. Results::Analysis of the spatial transcriptome revealed significant alterations in cell clusters during the progression of scleroderma. Gene Ontology analysis identified disruptions in lipid metabolism as the disease advanced. Pseudotime analysis provided evidence for a phenotypic transition from adipocytes to fibroblasts. In vitro studies demonstrated increased expression of Col1a1 and α-SMA as the disease progressed. These fibroblasts have been identified as key contributors to the increasing inflammation. Co-culturing TGF-β induced adipocytes with RAW264.7 cells resulted in overexpression of pro-inflammatory cytokines in the RAW264.7 cells. Both in vitro and in vivo experiments confirmed adipocyte loss and fibroblast formation, with transformed fibroblasts showing pronounced pro-inflammatory characteristics, highlighting their crucial role in the disease mechanism. Conclusions::Our study showed the spatial distribution and dynamic alterations of various cell types during scleroderma progression. Crucially, we identified the transformation of adipocytes into fibroblasts as a key factor promoting disease advancement. These emergent fibroblasts intensify inflammation, indicating that research on these cell clusters could reveal key scleroderma mechanisms and guide future therapies.
4.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
5.Long non-coding RNA MALAT1 regulates astrocyte proliferation and apoptosis and affects MAPK/ERK1,2 signaling pathway
Hui HU ; Xue WANG ; Yuhan WU ; Huafeng DONG ; Ling ZHANG ; Aijun WEI ; Fang XIE ; Yun ZHAO ; Zhaowei SUN ; Lingjia QIAN
Military Medical Sciences 2024;48(5):347-354
Objective To investigate the effect of MALAT1 expressions on cell proliferation and apoptosis in astrocytes by regulating mitogen-activated protein kinase(MAPK)/extracellular signal-regulated kinase(ERK1,2)pathway.Methods The MALAT1 gene was knocked down and over-expressed in C8-D1A cells by lentiviral and plasmid vectors,respectively.The expressions of MALAT1,cell proliferation-related markers(Ki67,MCM2,PCNA)and apoptosis-related proteins(Caspase-3,Bax,Bcl-2)were detected by quantitative real-time polymerase chain reaction(qPCR).CCK-8 assay and flow cytometry were used for cell proliferation and apoptosis in C8-D1A cells.Immunofluorescence was adopted to detect the protein expressions of Caspase-3 and Ki67.Western blotting was used to detect the protein expressions of Caspase-3,Bax,Bcl-2,ERK1/2,p-ERK1/2,p38MAPK and p-p38MAPK.Results Compared with the control group,over-expressed MALAT1 inhibited cell proliferation and induced cell apoptosis in C8-D1A cells while the knockdown of MALAT1 significantly enhanced cell proliferation and anti-apoptotic ability in C8-D1A cells.The proportion of C8-D1A cells in G0/G1-phase and G2/M-phase was higher than in the control group as evidenced by flow cytometry,but was lower in S-phase.Meanwhile,data showed that Caspase-3 was increased while p-ERK1/2 was decreased in terms of protein levels.The mRNA expressions of Ki67 and PCNA were decreased.After knockdown of MALAT1,the proportion of C8-D1A cells in S-phase was higher,but was lower in G2/M-phase.The protein expressions of Caspase-3 and Bax decreased while those of p-ERK1/2 and p-p38MAPK increased.The mRNA expressions of Ki67,MCM2 and PCNA were increased.The differences were all statistically significant(P<0.05).Conclusion MALAT1 promotes astrocyte apoptosis and inhibits proliferation by regulating the MAPK/ERK1,2 signaling pathway.
6.Effect of a novel phosphodiesterase 5 inhibitor, CPD1, on renal interstitial fibrosis after unilateral renal ischemia-reperfusion injury.
Ao-Lu LIU ; Zhuang LI ; Mei-Zhi LU ; Hao-Heng QIU ; Zhong-Lian XIE ; Xiao-Qing LIU ; Allan Zi-Jian ZHAO ; Yun-Ping MU ; Fang-Hong LI
Acta Physiologica Sinica 2023;75(1):1-9
This study was designed to evaluate the protective effect of CPD1, a novel phosphodiesterase 5 inhibitor, on renal interstitial fibrosis after unilateral renal ischemia-reperfusion injury (UIRI). Male BALB/c mice were subjected to UIRI, and treated with CPD1 once daily (i.g, 5 mg/kg). Contralateral nephrectomy was performed on day 10 after UIRI, and the UIRI kidneys were harvested on day 11. Hematoxylin-eosin (HE), Masson trichrome and Sirius Red staining methods were used to observe the renal tissue structural lesions and fibrosis. Immunohistochemical staining and Western blot were used to detect the expression of proteins related to fibrosis. HE, Sirius Red and Masson trichrome staining showed that CPD1-treated UIRI mice had lower extent of tubular epithelial cell injury and deposition of extracellular matrix (ECM) in renal interstitium compared with those in the fibrotic mouse kidneys. The results from immunohistochemistry and Western blot assay indicated significantly decreased protein expressions of type I collagen, fibronectin, plasminogen activator inhibitor-1 (PAI-1) and α-smooth muscle actin (α-SMA) after CPD1 treatment. In addition, CPD1 dose-dependently inhibited the expression of ECM-related proteins induced by transforming growth factor β1 (TGF-β1) in normal rat kidney interstitial fibroblasts (NRK-49F) and human renal tubular epithelial cell line (HK-2). In summary, the novel PDE inhibitor, CPD1, displays strong protective effects against UIRI and fibrosis by suppressing TGF-β signaling pathway and regulating the balance between ECM synthesis and degradation through PAI-1.
Animals
;
Humans
;
Male
;
Mice
;
Rats
;
Extracellular Matrix Proteins
;
Fibrosis
;
Kidney
;
Kidney Diseases
;
Phosphodiesterase 5 Inhibitors
;
Plasminogen Activator Inhibitor 1
7.Expression of Key Enzymes in Glucose Metabolism in Chronic Mountain Sickness and Its Correlation with Phenotype.
Yun-Mei GAO ; Guo-Xiong HAN ; Cheng-Hui XUE ; Lai-Fu FANG ; Wen-Qian LI ; Kuo SHEN ; You-Bang XIE
Journal of Experimental Hematology 2023;31(1):197-202
OBJECTIVE:
To explore the pathogenesis of erythrocytosis by detecting the key enzymes of glucose metabolism and glucose transporter in bone marrow erythrocytes of chronic mountain sickness (CMS), and analyzing its correlation with hemoglobin.
METHODS:
Twenty CMS patients hospitalized in Qinghai Provincial People's Hospital from January 2019 to December 2020 were selected as CMS group. Twenty males with leukocyte count > 3.5×109/L who had accepted bone marrow aspiration and had normal result were taken as control group. The mRNA and protein expression of key enzymes and glucose transporter in glucose metabolism in bone marrow CD71+ erythrocytes were detected by real time qPCR and Western blot, respectively. Glucose, lactic acid and 2,3-diphosphoglycerate in the bone marrow supernatant and serum were tested by ELISA. The mRNA and protein expression of key enzymes and glucose transporter, glucose, lactic acid and 2,3-diphosphoglycerate of the two groups were compared. Pearson correlation was used to analyze the correlation between key enzymes, glucose transporter in glucose metabolism in bone marrow CD71+ erythrocytes and hemoglobin.
RESULTS:
The expression of HK2, GLUT1 and GLUT2 mRNA in the CMS group were higher than those in the control group (P<0.001), while the expression of HK1, OGDH and COX5B mRNA were not different. The expression of HK2, GLUT1 and GLUT2 protein in the CMS group were higher than those in the control group (P<0.05). The levels of glucose and lactic acid in the bone marrow supernatant and serum in the CMS group were not different from those in the control group, while the level of 2,3-diphosphoglycerate was higher (P<0.001). Both HK2 and GLUT2 proteins were positively correlated with hemoglobin (r=0.511, 0.717).
CONCLUSION
CMS patients may increase glycolysis by increasing the expression of HK2, and promote the utilization of glucose through high expression of GLUT1 and GLUT2 to meet the need of energy supply.
Male
;
Humans
;
Altitude Sickness/metabolism*
;
Glucose Transporter Type 1
;
2,3-Diphosphoglycerate
;
Hemoglobins
;
Chronic Disease
;
RNA, Messenger
;
Phenotype
;
Glucose
8.Quantitative analysis of the changes of optic disc in patients with monocular retinal vein occlusion
Shao-Jin ZHU ; Chi XIE ; Zi-Yu TAO ; Yun WANG ; Yan FANG
International Eye Science 2023;23(1):158-162
AIM: To quantitatively analyze the changes of the peripapillary capillary vessel density(ppVD)and the peripapillary retina nerve fiber layer(pRNFL)thickness in patients with monocular retinal vein occlusion(RVO)by optical coherence tomography angiography(OCTA), and further analyze the correlation between the ppVD and the pRNFL thickness.METHODS: Prospective observational research. A total of 43 patients diagnosed with monocular RVO were enrolled in the Department of Ophthalmology of the First Affiliated Hospital of Anhui University of Science and Technology from January to December 2021, among which 43 RVO eyes were regarded as the affected group and 43 fellow eyes were regarded as the contralateral group. At the same time, 21 healthy volunteers(42 eyes)matching the age and gender with RVO patients were regarded as the control group. The vessel density(VD)of inside optic disc, the whole VD of around disc and the ppVD and pRNFL thickness around the optic disc were measured by OCTA, including peripapillary superior(pS), peripapillary inferior(pI), temporal superior(TS), superior temporal(ST), superior nasal(SN), nasal superior(NS), nasal inferior(NI), inferior nasal(IN), inferior temporal(IT), and temporal inferior(TI). The characteristic changes of ppVD and pRNFL thickness and theirs correlation in the three groups were analyzed.RESULTS: The VD of inside optic disc, the whole VD of around disc and the ppVD in the pS, pI, TI, ST and SN side of the affected group were all significantly decreased compared with the control group(all P<0.05). But only VD of the inside disc in contralateral group was decreased(all P<0.05). Compared with the control group, the pRNFL thickness in the TS side of the affected group was increased, and the ST and IT side pRNFL thickness of the contralateral group were decreased(all P<0.01). The canonical correlation analysis revealed that ppVD and pRNFL thickness were provided with a strong correlation between the two comprehensive variables. There were 2 pairs of canonical correlation variables in affected group and contralateral group, and 3 pairs of canonical correlation variables in control group.CONCLUSION: The VD in the optic disc area of the affected group was decreased in patients with monocular RVO, and the pRNFL thickness in ST and IT side of the contralateral group was thinner. There was a strong positive correlation between ppVD and pRNFL thickness as a whole. The changes of ppVD and pRNFL thickness in the optic disc area were mostly manifested in the superior quadrant of the affected group and the inferior quadrant of the contralateral group.
9. Effect of a novel phosphodiesterase type 5 inhibitor, CPD1, on carbon tetrachloride-induced liver fibrosis in mice
Wen-Bin FENG ; Jian-Qin YANG ; Xin-Hui CHEN ; Zhong-Lian XIE ; Ying-Ying ZHANG ; Ying-Xi CHEN ; Zi-Jian ZHAO ; Yun-Ping MU ; Fang-Hong LI
Chinese Pharmacological Bulletin 2023;39(3):470-476
Aim To investigate the effects of CPD1, a novel phosphodiesterase 5 inhibitor, on liver pathological phenotype and hepatic stellate cells (HSCs) activation in hepatic fibrosis model mice caused by carbon tetrachloride ( CCl
10. Treatment advice of small molecule antiviral drugs for elderly COVID-19
Min PAN ; Shuang CHANG ; Xiao-Xia FENG ; Guang-He FEI ; Jia-Bin LI ; Hua WANG ; Du-Juan XU ; Chang-Hui WANG ; Yan SUN ; Xiao-Yun FAN ; Tian-Jing ZHANG ; Wei WEI ; Ling-Ling ZHANG ; Jim LI ; Fei-Hu CHEN ; Xiao-Ming MENG ; Hong-Mei ZHAO ; Min DAI ; Yi XIANG ; Meng-Shu CAO ; Xiao-Yang CHEN ; Xian-Wei YE ; Xiao-Wen HU ; Ling JIANG ; Yong-Zhong WANG ; Hao LIU ; Hai-Tang XIE ; Ping FANG ; Zhen-Dong QIAN ; Chao TANG ; Gang YANG ; Xiao-Bao TENG ; Chao-Xia QIAN ; Guo-Zheng DING
Chinese Pharmacological Bulletin 2023;39(3):425-430
COVID-19 has been prevalent for three years. The virulence of SARS-CoV-2 is weaken as it mutates continuously. However, elderly patients, especially those with underlying diseases, are still at high risk of developing severe infections. With the continuous study of the molecular structure and pathogenic mechanism of SARS-CoV-2, antiviral drugs for COVID-19 have been successively marketed, and these anti-SARS-CoV-2 drugs can effectively reduce the severe rate and mortality of elderly patients. This article reviews the mechanism, clinical medication regimens, drug interactions and adverse reactions of five small molecule antiviral drugs currently approved for marketing in China, so as to provide advice for the clinical rational use of anti-SARS-CoV-2 in the elderly.


Result Analysis
Print
Save
E-mail