1.Effect of hand hygiene intervention on healthcare-associated case infection incidence from 2014 to 2022
Jia-Yan DING ; Rui-Hong SHEN ; Wen-Qin ZHOU ; Ya-Yun YUAN ; Mei HUANG ; Ya YANG ; Bing-Chao CAI ; Hai-Qun BAN ; Xiao-Fang FU
Chinese Journal of Infection Control 2024;23(2):208-213
		                        		
		                        			
		                        			Objective To observe the effect of multi-modal hand hygiene(HH)intervention on HH compliance,as well as the relationship between HH compliance and the healthcare-associated(HA)case infection incidence.Methods From 2014 to 2022,the infection control team in a tertiary first-class hospital implemented multi-modal HH intervention for health care workers(HCWs).The changing trend of HH monitoring data,the correlation be-tween HH compliance rate and HA case infection incidence were analyzed retrospectively.Results The consump-tion of HH products in the wards showed a stable upward trend;HH compliance rate increased from 64.98%in 2014 to 85.01%in 2022(P<0.001),and HA case infection incidence decreased from 1.21%to 0.83%(P<0.05).HH compliance rate was negatively correlated with HA case infection incidence(r=-0.369,P=0.027).HH compliance rates in different regions and job posts in each quarter were increased(P<0.001).For 5 different HH moments in each quarter,HH compliance rate fluctuated slightly before sterile manipulation and after touching patient;presented rising trend after touching surroundings around patient,and decreased before touching patient and after touching patient's body fluid since 2020(P<0.001).Conclusion Multi-modal HH intervention can im-prove the HH compliance of HCWs,improving their HH awareness is conducive to reducing HA case infection incidence.
		                        		
		                        		
		                        		
		                        	
2.Analysis of causes of bleeding after endoscopic duodenal papillary adenoma resection and establishment of prediction model
Chun-Yan JIN ; Hua YANG ; Lei WANG ; Qin YIN ; Meng-Yun HU ; Xu FANG ; Mu-Han NI
Modern Interventional Diagnosis and Treatment in Gastroenterology 2024;29(4):398-402,406
		                        		
		                        			
		                        			Objective The causes of bleeding after endoscopic duodenal papilloma resection were analyzed and discussed,and the prediction model of nomogram was established.Methods A total of 233 patients who underwent endoscopic duodenal papilloma resection in our hospital from January 2018 to December 2023 were retrospectively analyzed,and they were divided into bleeding group(n=31 cases)and non-bleeding group(n=202 cases)according to whether postoperative bleeding occurred.The clinical data of the two groups were compared,the independent risk factors for postoperative bleeding were analyzed by multi-factor logistic regression,the risk nomogram prediction model was constructed,and the Bootstrap method was used for 1000 repeated samples to carry out internal verification.Results Anticoagulant drugs(OR=9.063,95%CI:2.132-38.525),lesion diameter ≥2 cm(OR=2.802,95%CI:1.073-7.321),intraoperative fragment resection(OR=27.653,95%CI:3.055~619.174)and pancreatic complications(OR=6.859,95%CI:1.930~24.377)were independent risk factors for postoperative bleeding after endoscopic duodenal papilloma resection(P<0.05).A risk prediction nomogram model was constructed according to the Logistic regression analysis results.The samples were repeatedly sampled 1000 times through Bootstrap method for internal verification.The area under the ROC curve was 0.850,and the 95%CI was 0.780-0.913,indicating good differentiation ability of the model.Calibration curve analysis indicated that the prediction probability of postoperative bleeding predicted by the nomogram prediction model was in good agreement with the actual probability of postoperative bleeding,and Hosmer-Lemeshow showed good goodness of fit(x2=3.304 9,P=0.913 8).Conclusion Taking anticoagulant drugs,lesion diameter ≥2 cm,intraoperative segmentary resection,and postoperative combination of pancreas were independent risk factors for bleeding after endoscopic duodenal papilloma resection.A nomogram prediction model was established to help clinical assessment of postoperative bleeding risk in patients and improve decision-making basis for early prevention.
		                        		
		                        		
		                        		
		                        	
3.The Role of Mechanical Sensitive Ion Channel Piezo in Digestive System Diseases
Si-Qi WANG ; Xiang-Yun YAN ; Yan-Qiu LI ; Fang-Li LUO ; Jun-Peng YAO ; Pei-Tao MA ; Yu-Jun HOU ; Hai-Yan QIN ; Yun-Zhou SHI ; Ying LI
Progress in Biochemistry and Biophysics 2024;51(8):1883-1894
		                        		
		                        			
		                        			The Piezo protein is a non-selective mechanosensitive cation channel that exhibits sensitivity to mechanical stimuli such as pressure and shear stress. It converts mechanical signals into bioelectric activity within cells, thus triggering specific biological responses. In the digestive system, Piezo protein plays a crucial role in maintaining normal physiological activities, including digestion, absorption, metabolic regulation, and immune modulation. However, dysregulation in Piezo protein expression may lead to the occurrence of several pathological conditions, including visceral hypersensitivity, impairment of intestinal mucosal barrier function, and immune inflammation.Therefore, conducting a comprehensive review of the physiological functions and pathological roles of Piezo protein in the digestive system is of paramount importance. In this review, we systematically summarize the structural and dynamic characteristics of Piezo protein, its expression patterns, and physiological functions in the digestive system. We particularly focus on elucidating the mechanisms of action of Piezo protein in digestive system tumor diseases, inflammatory diseases, fibrotic diseases, and functional disorders. Through the integration of the latest research findings, we have observed that Piezo protein plays a crucial role in the pathogenesis of various digestive system diseases. There exist intricate interactions between Piezo protein and multiple phenotypes of digestive system tumors such as proliferation, apoptosis, and metastasis. In inflammatory diseases, Piezo protein promotes intestinal immune responses and pancreatic trypsinogen activation, contributing to the development of ulcerative colitis, Crohn’s disease, and pancreatitis. Additionally, Piezo1, through pathways involving co-action with the TRPV4 ion channel, facilitates neutrophil recruitment and suppresses HIF-1α ubiquitination, thereby mediating organ fibrosis in organs like the liver and pancreas. Moreover, Piezo protein regulation by gut microbiota or factors like age and gender can result in increased or decreased visceral sensitivity, and alterations in intestinal mucosal barrier structure and permeability, which are closely associated with functional disorders like irritable bowel sydrome (IBS) and functional consitipaction (FC). A thorough exploration of Piezo protein as a potential therapeutic target in digestive system diseases can provide a scientific basis and theoretical support for future clinical diagnosis and treatment strategies. 
		                        		
		                        		
		                        		
		                        	
4.Risk factors for bronchopulmonary dysplasia in twin preterm infants:a multicenter study
Yu-Wei FAN ; Yi-Jia ZHANG ; He-Mei WEN ; Hong YAN ; Wei SHEN ; Yue-Qin DING ; Yun-Feng LONG ; Zhi-Gang ZHANG ; Gui-Fang LI ; Hong JIANG ; Hong-Ping RAO ; Jian-Wu QIU ; Xian WEI ; Ya-Yu ZHANG ; Ji-Bin ZENG ; Chang-Liang ZHAO ; Wei-Peng XU ; Fan WANG ; Li YUAN ; Xiu-Fang YANG ; Wei LI ; Ni-Yang LIN ; Qian CHEN ; Chang-Shun XIA ; Xin-Qi ZHONG ; Qi-Liang CUI
Chinese Journal of Contemporary Pediatrics 2024;26(6):611-618
		                        		
		                        			
		                        			Objective To investigate the risk factors for bronchopulmonary dysplasia(BPD)in twin preterm infants with a gestational age of<34 weeks,and to provide a basis for early identification of BPD in twin preterm infants in clinical practice.Methods A retrospective analysis was performed for the twin preterm infants with a gestational age of<34 weeks who were admitted to 22 hospitals nationwide from January 2018 to December 2020.According to their conditions,they were divided into group A(both twins had BPD),group B(only one twin had BPD),and group C(neither twin had BPD).The risk factors for BPD in twin preterm infants were analyzed.Further analysis was conducted on group B to investigate the postnatal risk factors for BPD within twins.Results A total of 904 pairs of twins with a gestational age of<34 weeks were included in this study.The multivariate logistic regression analysis showed that compared with group C,birth weight discordance of>25%between the twins was an independent risk factor for BPD in one of the twins(OR=3.370,95%CI:1.500-7.568,P<0.05),and high gestational age at birth was a protective factor against BPD(P<0.05).The conditional logistic regression analysis of group B showed that small-for-gestational-age(SGA)birth was an independent risk factor for BPD in individual twins(OR=5.017,95%CI:1.040-24.190,P<0.05).Conclusions The development of BPD in twin preterm infants is associated with gestational age,birth weight discordance between the twins,and SGA birth.
		                        		
		                        		
		                        		
		                        	
5.Spatial transcriptomic analysis deciphers adipocyte-to-fibroblast transformation in bleomycin-induced murine skin fibrosis
Yixiang ZHANG ; Jiahao HE ; Fangzhou XIE ; Shengzhou SHAN ; Jiaqi QIN ; Chuandong WANG ; Qingfeng LI ; Yun XIE ; Bin FANG
Chinese Medical Journal 2024;137(22):2745-2757
		                        		
		                        			
		                        			Background::Scleroderma is characterized by inflammation and fibrosis, predominantly occurring in the skin and extending to various parts of the body. The pathophysiology of scleroderma is multifaceted, with the current understanding including endothelial damage, inflammatory cell infiltration, and fibroblast activation in its progression. Nonetheless, the mechanism of cellular interactions and the precise spatial distribution of these cellular events within the fibrotic tissues remain elusive, highlighting a critical gap in our comprehensive understanding of scleroderma’s pathogenesis.Methods::In this study, we administered bleomycin intradermally to the dorsal skin of four individual murine models. Subsequently, skin tissues were harvested at predetermined intervals for comprehensive spatial transcriptomic analysis to determine the spatial dynamics influencing scleroderma pathogenesis. To validate the possible results from bioinformatic analysis, further in vitro and in vivo experiments were conducted. Results::Analysis of the spatial transcriptome revealed significant alterations in cell clusters during the progression of scleroderma. Gene Ontology analysis identified disruptions in lipid metabolism as the disease advanced. Pseudotime analysis provided evidence for a phenotypic transition from adipocytes to fibroblasts. In vitro studies demonstrated increased expression of Col1a1 and α-SMA as the disease progressed. These fibroblasts have been identified as key contributors to the increasing inflammation. Co-culturing TGF-β induced adipocytes with RAW264.7 cells resulted in overexpression of pro-inflammatory cytokines in the RAW264.7 cells. Both in vitro and in vivo experiments confirmed adipocyte loss and fibroblast formation, with transformed fibroblasts showing pronounced pro-inflammatory characteristics, highlighting their crucial role in the disease mechanism. Conclusions::Our study showed the spatial distribution and dynamic alterations of various cell types during scleroderma progression. Crucially, we identified the transformation of adipocytes into fibroblasts as a key factor promoting disease advancement. These emergent fibroblasts intensify inflammation, indicating that research on these cell clusters could reveal key scleroderma mechanisms and guide future therapies.
		                        		
		                        		
		                        		
		                        	
6.Mechanism of Marsdenia tenacissima against ovarian cancer based on network pharmacology and experimental verification.
Yu-Jie HU ; Lan-Yi WEI ; Juan ZHAO ; Qin-Fang ZHU ; Zhao-Yang MENG ; Jing-Jing MENG ; Jun-Jun CHEN ; Ling-Yan XU ; Yang-Yun ZHOU ; Yong-Long HAN
China Journal of Chinese Materia Medica 2023;48(8):2222-2232
		                        		
		                        			
		                        			The present study aimed to explore the main active components and underlying mechanisms of Marsdenia tenacissima in the treatment of ovarian cancer(OC) through network pharmacology, molecular docking, and in vitro cell experiments. The active components of M. tenacissima were obtained from the literature search, and their potential targets were obtained from SwissTargetPrediction. The OC-related targets were retrieved from Therapeutic Target Database(TTD), Online Mendelian Inheritance in Man(OMIM), GeneCards, and PharmGKB. The common targets of the drug and the disease were screened out by Venn diagram. Cytoscape was used to construct an "active component-target-disease" network, and the core components were screened out according to the node degree. The protein-protein interaction(PPI) network of the common targets was constructed by STRING and Cytoscape, and the core targets were screened out according to the node degree. GO and KEGG enrichment analyses of potential therapeutic targets were carried out with DAVID database. Molecular docking was used to determine the binding activity of some active components to key targets by AutoDock. Finally, the anti-OC activity of M. tenacissima extract was verified based on SKOV3 cells in vitro. The PI3K/AKT signaling pathway was selected for in vitro experimental verification according to the results of GO function and KEGG pathway analyses. Network pharmacology results showed that 39 active components, such as kaempferol, 11α-O-benzoyl-12β-O-acetyltenacigenin B, and drevogenin Q, were screened out, involving 25 core targets such as AKT1, VEGFA, and EGFR, and the PI3K-AKT signaling pathway was the main pathway of target protein enrichment. The results of molecular docking also showed that the top ten core components showed good binding affinity to the top ten core targets. The results of in vitro experiments showed that M. tenacissima extract could significantly inhibit the proliferation of OC cells, induce apoptosis of OC cells through the mitochondrial pathway, and down-regulate the expression of proteins related to the PI3K/AKT signaling pathway. This study shows that M. tenacissima has the characteristics of multi-component, multi-target, and multi-pathway synergistic effect in the treatment of OC, which provides a theoretical basis for in-depth research on the material basis, mechanism, and clinical application.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Marsdenia
		                        			;
		                        		
		                        			Molecular Docking Simulation
		                        			;
		                        		
		                        			Network Pharmacology
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt
		                        			;
		                        		
		                        			Ovarian Neoplasms/genetics*
		                        			;
		                        		
		                        			Databases, Genetic
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			Drugs, Chinese Herbal/pharmacology*
		                        			
		                        		
		                        	
7.Expert consensus on the prevention and treatment of adverse reactions in subcutaneous immunotherapy(2023, Chongqing).
Yu Cheng YANG ; Yang SHEN ; Xiang Dong WANG ; Yan JIANG ; Qian Hui QIU ; Jian LI ; Shao Qing YU ; Xia KE ; Feng LIU ; Yuan Teng XU ; Hong Fei LOU ; Hong Tian WANG ; Guo Dong YU ; Rui XU ; Juan MENG ; Cui Da MENG ; Na SUN ; Jian Jun CHEN ; Ming ZENG ; Zhi Hai XIE ; Yue Qi SUN ; Jun TANG ; Ke Qing ZHAO ; Wei Tian ZHANG ; Zhao Hui SHI ; Cheng Li XU ; Yan Li YANG ; Mei Ping LU ; Hui Ping YE ; Xin WEI ; Bin SUN ; Yun Fang AN ; Ya Nan SUN ; Yu Rong GU ; Tian Hong ZHANG ; Luo BA ; Qin Tai YANG ; Jing YE ; Yu XU ; Hua Bin LI
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(7):643-656
8.Study on the Relationship between Integrin 2A and Drug Resistance in Chronic Myeloid Leukemia.
Nai-Qin ZHAO ; Cheng-Yun PAN ; Tian-Zhuo ZHANG ; Ping LIU ; Tian-Zhen HU ; Qin SHANG ; Hong LUO ; Qin FANG ; Ji-Shi WANG
Journal of Experimental Hematology 2023;31(1):8-16
		                        		
		                        			OBJECTIVE:
		                        			To explore the expression pattern and clinical significance of Integral membrane protein 2A(ITM2A) in drug resistant patients with chronic myeloid leukemia (CML).
		                        		
		                        			METHODS:
		                        			The expression of ITM2A in CML was evaluated by qRT-PCR, Western blot and immunocytochemistry. In order to understand the possible biological effects of ITM2A, apoptosis, cell cycle and myeloid differentiation antigen expression of CML cells were detected by flow cytometry after over-expression of ITM2A. The nuderlying molecular mechanism of its biological effect was explored.
		                        		
		                        			RESULTS:
		                        			The expression of ITM2A in bone marrow of CML resistant patients was significantly lower than that of sensitive patients and healthy donors(P<0.05). The CML resistant strain cell K562R was successfully constructed in vitro. The expression of ITM2A in the resistant strain was significantly lower than that in the sensitive strain(P<0.05). Overexpression of ITM2A in K562R cells increased the sensitivity of K562R cells to imatinib and blocked the cell cycle in G2 phase(P<0.05), but did not affect myeloid differentiation. Mechanistically, up-regulation of ITM2A reduced phosphorylation in ERK signaling (P<0.05).
		                        		
		                        			CONCLUSION
		                        			The expression of ITM2A was low in patients with drug resistance of CML, and the low expression of ITM2A may be the key factor of imatinib resistance in CML.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Antineoplastic Agents/pharmacology*
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Drug Resistance, Neoplasm
		                        			;
		                        		
		                        			Imatinib Mesylate/therapeutic use*
		                        			;
		                        		
		                        			K562 Cells
		                        			;
		                        		
		                        			Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
		                        			;
		                        		
		                        			Signal Transduction
		                        			
		                        		
		                        	
9. Regulation of platelet function by cantharidin via PI3K/Akt/PKC pathway
Fang GUO ; Xiao-Yun TIAN ; Xiu-Qin XIONG ; Zhao-Wei YUAN ; Li ZHANG ; Yu-Jing YUAN ; Tao LIU ; Gang LIU ; Gang LIU ; Gang LIU
Chinese Pharmacological Bulletin 2023;39(7):1248-1255
		                        		
		                        			
		                        			 To investigate the effect of cantharidin ( CTD) on platelet function and the mechanism of anti-platelet aggregation. Methods Washed platelets were collected from the venous blood of healthy volunteers. The effect of CTD on platelet aggregation and release was determined by aggregometer. The CTD concentration was 2.5 ,5 ,10 μmol • L 
		                        		
		                        		
		                        		
		                        	
10. Effect of Gualou Xiebai Decoction on type II cardiorenal syndrome based on endothelial/epithelial-to-mesenchymal transition and its mechanism
Yun-Yun ZHANG ; Xiao-Yu ZHANG ; Hua-Hua WANG ; Yue-Hong SHEN ; Yong-Fang DING ; Ming-Qin SHEN ; Yun-Yun ZHANG ; Xiao-Yu ZHANG ; Hua-Hua WANG ; Yue-Hong SHEN ; Yong-Fang DING ; Ming-Qin SHEN
Chinese Pharmacological Bulletin 2023;39(6):1173-1181
		                        		
		                        			
		                        			 Aim To investigate the protective effects of different doses Gualou Xiebai Decoction (GXD) on type II cardiorenal syndrome (type II CRS) and explore its preliminary mechanisms. Methods The type II cardiorenal syndrome rat model was replicated by li-gating the left anterior descending coronary artery. After 10 weeks of intragastric administration, the cardiac function of the rats in each group was evaluated by echocardiography; serum were collected for biochemical testing; heart and kidney tissue samples were stained with HE and Masson to observe pathological changes. The hydroxyproline content in the heart and kidney was detected. The expression levels of endothelial/epitheli-al-to-mesenchymal transition (EndMT/EMT) related proteins in heart and kidney tissues were detecterd by immunofluorescence double staining ^Western blot. Results The index of heart and kidney organs of the low and high doses of GXD group significantly decreased (P<0. 05, P <0. 01), the cardiac function indexes were significantly improved (P < 0. 05, P < 0. 01). Serum characteristic indexes showed that heart and kidney functions were significantly improved (P < 0. 01). In addition, the pathological changes of the heart and kidney were significantly ameliorated. The hydroxyproline content in heart and kidney correspondingly declined (P < 0. 01). The expression levels of CD31 and E-cadherin were significantly up-regulated (P < 0. 05, P <0. 01), and the expression levels of Vimentin, a-SMA and TGF-f3l were down-regulated in heart and kidney tissues (P < 0. 05, P < 0. 01). Conclusions Therefore, GXD can significantly improve the heart and kidney function of type II CRS rats caused by ligation of the left anterior descending coronary artery, and delay the process of heart and kidney fibrosis. The mechanism may be related to the inhibition of EndMT/ EMT. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail