1.Study on relationships of MS4A1 gene polymorphism with blood concentration and efficacy of rituximab in patients with non-Hodgkin’s lymphoma
Feng SHI ; Tao LIU ; He HUANG ; Caifu FANG ; Shaoxing GUAN ; Zhang ZHANG ; Zhao WANG ; Xiaojie FANG ; Zhuojia CHEN ; Shu LIU
China Pharmacy 2025;36(13):1641-1647
		                        		
		                        			
		                        			OBJECTIVE To explore the effects of CD20 coding gene (MS4A1) polymorphism on the blood concentration and efficacy of rituximab in patients with non-Hodgkin’s lymphoma. METHODS A prospective observational study was conducted on 160 newly diagnosed non-Hodgkin’s lymphoma patients who received the R-CHOP regimen at the Sun Yat Sen University Cancer Center from January 2016 to December 2020, with a minimum follow-up period of approximately 5 years. The blood concentration of rituximab was detected by enzyme-linked immunosorbent assay. MS4A1 tagSNPs were selected by Haploview4.2 software, including rs1051461, rs17155034, rs4939364, and rs10501385. The genotype of MS4A1 was detected by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Univariate linear regression analysis was employed to examine the correlation between various factors(demographic, clinical, and genotypic variables) in patients and the steady-state trough concentration of rituximab during the first course of treatment, followed by multivariate linear regression analysis. Kaplan-Meier curves were drawn to evaluate progression-free survival (PFS) and overall survival (OS). Using MS4A1 genotype and tumor stage as independent variables, Cox regression model was employed to evaluate the factors influencing patient prognosis. RESULTS The blood concentration of rituximab in MS4A1 rs10501385 CC carriers was 15.20 μg/mL,which was significantly lower than 21.95 μg/mL in AA+AC carriers (P<0.05). The multivariate linear regression model incorporating tumor stage and MS4A1 rs10501385 polymorphism explained 7.3% of the interindividual variability in rituximab concentrations. Compared with MS4A1 rs1051461 CC carriers, CT+TT carriers had significantly prolonged PFS and OS (P<0.05). The Cox proportional hazards regression model showed that the MS4A1 rs1051461 CC genotype (HR=4.406, 95%CI:1.743-11.137, P<0.05) and tumor Ⅲ&Ⅳ (HR=3.233, 95%CI: 1.413-7.399, P<0.05) were independent risk factors for PFS. CONCLUSIONS The tumor staging and MS4A1 rs10501385 polymorphism are key influencing factors for blood concentration of rituximab, and MS4A1 rs1051461 polymorphism significantly affects PFS in non-Hodgkin’s lymphoma patients.
		                        		
		                        		
		                        		
		                        	
2.Effect of Stasis-dispelling and Detoxifying Therapy on Clinical Efficacy and JNK Signaling Pathway-related Protein Expression in Endometriosis Patients with Syndrome of Kidney Deficiency and Blood Stasis
Tingting WANG ; Zhaokang QI ; Jinxin REN ; Shuai ZHAO ; Chunxiao WEI ; Yi YU ; Fang LIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):120-129
		                        		
		                        			
		                        			ObjectiveTo observe the clinical efficacy of the stasis-dispelling and detoxifying therapy in endometriosis (EMs) patients with the syndrome of kidney deficiency and blood stasis and the effects of this therapy on the expression levels of proteins related to the c-Jun N-terminal kinase (JNK) signaling pathway. MethodsA total of 72 patients with EMs due to kidney deficiency and blood stasis who met the criteria at the Integrated Traditional Chinese and Western Medicine Center for Reproduction and Genetics of the Affiliated Hospital of Shandong University of Traditional Chinese Medicine from March 2024 to February 2025 were selected and randomized into a treatment group and a control group, with 36 patients in each group. Another 36 patients undergoing in vitro fertilization-embryo transfer (IVF-ET) due to male factors alone were selected as the blank group. The treatment group took the Zishen Quyu Jiedu formula orally, while the control group and the blank group took placebos. The treatment course encompassed the cycle before ovarian stimulation and the oocyte retrieval cycle. The TCM syndrome score of kidney deficiency and blood stasis, as well as the serum level of cancer antigen 125 (CA125), were evaluated at the time of enrollment (before treatment) and on the trigger day (after treatment). Serum levels of sex hormones were measured on day 2 of the menstrual cycle. On the trigger day, the duration and dosage of gonadotropin (Gn) administration and the serum levels of hormones on the day of human chorionic gonadotropin (HCG) injection were assessed. Embryo outcomes were evaluated 3 days after oocyte retrieval, and clinical pregnancy rates were assessed 28 days after embryo transfer. The baseline data of three groups were observed. The TCM syndrome scores and serum CA125 levels before and after treatment were compared between the treatment and control groups. The baseline endocrine levels, Gn days, Gn dosage, hormone levels on the day of HCG administration, number of oocytes retrieved, number of 2 pronucleus (2PN) fertilizations, number of available embryos, high-quality embryo rate, and clinical pregnancy rate were also assessed in all three groups. Six patients from each group were selected for determination of the protein levels of JNK, c-Jun, and nuclear receptor subfamily 4 group A member 2 (NR4A2) in ovarian granulosa cells (GCs) on the day of oocyte retrieval by Western blot. Results(1) There were no statistically significant differences in the baseline data among three groups, indicating comparability. (2) Compared with the baseline within the same group, the treatment group showed a decrease in the syndrome score of kidney deficiency and blood stasis after treatment. After treatment, serum CA125 levels decreased in both groups (P<0.05), with a more substantial reduction in the treatment group, resulting in a difference between the two groups (P<0.05). (3) There were no significant differences among three groups in terms of baseline serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), and progesterone (P), as well as the duration and dosage of Gn administration and the serum levels of LH, E2, and P on the day of HCG administration. (4) For embryo outcomes, the number of oocytes retrieved, 2PN fertilizations, available embryos, and high-quality embryo rates in the treatment group and the blank group were higher than those in the control group (P<0.05), and the treatment group and the blank group had similar 2PN fertilizations. (5) There were differences in clinical pregnancy rate among three groups (P<0.05), and the treatment group had higher pregnancy rate than the control and blank groups. (6) The protein levels of JNK, c-Jun, and NR4A2 in the GCs of the treatment group were lower than those in the control group (P<0.01) and close to those in the blank group (P<0.01). (7) No obvious adverse reactions were observed in any of the subjects during the clinical observation process. ConclusionZishen Quyu Jiedu formula can ameliorate the clinical symptoms of patients with EMs due to kidney deficiency and blood stasis, reduce the serum CA125 level, increase the number of oocytes retrieved, 2PN fertilizations, available embryos, and high-quality embryo rate, and improve pregnancy outcomes. The mechanism may involve downregulating the levels of JNK, c-Jun, and NR4A2 to reduce the apoptosis of ovarian GCs and improve the ovarian function in the patients. 
		                        		
		                        		
		                        		
		                        	
3.Effect of Stasis-dispelling and Detoxifying Therapy on Clinical Efficacy and JNK Signaling Pathway-related Protein Expression in Endometriosis Patients with Syndrome of Kidney Deficiency and Blood Stasis
Tingting WANG ; Zhaokang QI ; Jinxin REN ; Shuai ZHAO ; Chunxiao WEI ; Yi YU ; Fang LIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):120-129
		                        		
		                        			
		                        			ObjectiveTo observe the clinical efficacy of the stasis-dispelling and detoxifying therapy in endometriosis (EMs) patients with the syndrome of kidney deficiency and blood stasis and the effects of this therapy on the expression levels of proteins related to the c-Jun N-terminal kinase (JNK) signaling pathway. MethodsA total of 72 patients with EMs due to kidney deficiency and blood stasis who met the criteria at the Integrated Traditional Chinese and Western Medicine Center for Reproduction and Genetics of the Affiliated Hospital of Shandong University of Traditional Chinese Medicine from March 2024 to February 2025 were selected and randomized into a treatment group and a control group, with 36 patients in each group. Another 36 patients undergoing in vitro fertilization-embryo transfer (IVF-ET) due to male factors alone were selected as the blank group. The treatment group took the Zishen Quyu Jiedu formula orally, while the control group and the blank group took placebos. The treatment course encompassed the cycle before ovarian stimulation and the oocyte retrieval cycle. The TCM syndrome score of kidney deficiency and blood stasis, as well as the serum level of cancer antigen 125 (CA125), were evaluated at the time of enrollment (before treatment) and on the trigger day (after treatment). Serum levels of sex hormones were measured on day 2 of the menstrual cycle. On the trigger day, the duration and dosage of gonadotropin (Gn) administration and the serum levels of hormones on the day of human chorionic gonadotropin (HCG) injection were assessed. Embryo outcomes were evaluated 3 days after oocyte retrieval, and clinical pregnancy rates were assessed 28 days after embryo transfer. The baseline data of three groups were observed. The TCM syndrome scores and serum CA125 levels before and after treatment were compared between the treatment and control groups. The baseline endocrine levels, Gn days, Gn dosage, hormone levels on the day of HCG administration, number of oocytes retrieved, number of 2 pronucleus (2PN) fertilizations, number of available embryos, high-quality embryo rate, and clinical pregnancy rate were also assessed in all three groups. Six patients from each group were selected for determination of the protein levels of JNK, c-Jun, and nuclear receptor subfamily 4 group A member 2 (NR4A2) in ovarian granulosa cells (GCs) on the day of oocyte retrieval by Western blot. Results(1) There were no statistically significant differences in the baseline data among three groups, indicating comparability. (2) Compared with the baseline within the same group, the treatment group showed a decrease in the syndrome score of kidney deficiency and blood stasis after treatment. After treatment, serum CA125 levels decreased in both groups (P<0.05), with a more substantial reduction in the treatment group, resulting in a difference between the two groups (P<0.05). (3) There were no significant differences among three groups in terms of baseline serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), and progesterone (P), as well as the duration and dosage of Gn administration and the serum levels of LH, E2, and P on the day of HCG administration. (4) For embryo outcomes, the number of oocytes retrieved, 2PN fertilizations, available embryos, and high-quality embryo rates in the treatment group and the blank group were higher than those in the control group (P<0.05), and the treatment group and the blank group had similar 2PN fertilizations. (5) There were differences in clinical pregnancy rate among three groups (P<0.05), and the treatment group had higher pregnancy rate than the control and blank groups. (6) The protein levels of JNK, c-Jun, and NR4A2 in the GCs of the treatment group were lower than those in the control group (P<0.01) and close to those in the blank group (P<0.01). (7) No obvious adverse reactions were observed in any of the subjects during the clinical observation process. ConclusionZishen Quyu Jiedu formula can ameliorate the clinical symptoms of patients with EMs due to kidney deficiency and blood stasis, reduce the serum CA125 level, increase the number of oocytes retrieved, 2PN fertilizations, available embryos, and high-quality embryo rate, and improve pregnancy outcomes. The mechanism may involve downregulating the levels of JNK, c-Jun, and NR4A2 to reduce the apoptosis of ovarian GCs and improve the ovarian function in the patients. 
		                        		
		                        		
		                        		
		                        	
4.Establishment and stress analysis of a finite element model for adolescent cervical disc herniation
Yuxin ZHAO ; Liang LIANG ; Feng JIN ; Yangyang XU ; Zhijie KANG ; Yuan FANG ; Yujie HE ; Xing WANG ; Haiyan WANG ; Xiaohe LI
Chinese Journal of Tissue Engineering Research 2025;29(3):448-454
		                        		
		                        			
		                        			BACKGROUND:Cervical disc herniation can cause pain in the neck and shoulder area,as well as radiating pain in the upper limbs.The incidence rate is increasing year by year and tends to affect younger individuals.Fully understanding the biomechanical characteristics of the cervical spine in adolescents is of great significance for preventing and delaying the onset of cervical disc herniation in this age group. OBJECTIVE:To reconstruct cervical spine models for both healthy adolescents and adolescent patients with cervical disc herniation utilizing finite element analysis techniques,to analyze the motion range of the C1-T1 cervical vertebrae as well as the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and the cartilage of the small joints. METHODS:A normal adolescent's cervical spine and an adolescent patient with cervical disc herniation were selected in this study.The continuous scan cervical spine CT raw image data were imported into Mimics 21.0 in DICOM format.The C1-T1 vertebrae were reconstructed separately.Subsequently,the established models were imported into the 3-Matic software for disc reconstruction.The perfected models were then imported into Hypermesh software for meshing of the vertebrae,nucleus pulposus,annulus fibrosus,and ligaments,creating valid geometric models.After assigning material properties,the final models were imported into ABAQUS software to observe the joint motion range of the C1-C7 cervical vertebrae segments under different conditions,and to analyze the biomechanical characteristics of the annulus fibrosus,nucleus pulposus,endplates,and small joint cartilage of each cervical spine segment. RESULTS AND CONCLUSION:(1)In six different conditions,the joint motion range of the C1 vertebra in the cervical spine models of both normal adolescent and adolescent patient with cervical disc herniation was higher than that of the other vertebrae.Additionally,the joint motion range of each cervical spine segment in normal adolescent was greater than that in adolescent patient with cervical disc herniation.(2)In the cervical spine model of normal adolescent,the maximum stress values in the annulus fibrosus and nucleus pulposus were found on the left side during C2-3 flexion conditions(0.43 MPa and 0.17 MPa,respectively).In the cervical spine model of adolescent patient with cervical disc herniation,the maximum stress values were found on the left side during C7-T1 flexion conditions(0.54 MPa and 0.18 MPa,respectively).(3)In the cervical spine model of normal adolescent,the maximum stress value on the endplate was found on the left side of the upper endplate of C3 during flexion conditions(1.46 MPa).In the model of adolescent patient with cervical disc herniation,the maximum stress value on the endplate was found on the left side of the lower endplate of C7 during flexion conditions(1.32 MPa).(4)In the cervical spine model of normal adolescent,the maximum stress value in the small joint cartilage was found in the C2-3 left rotation conditions(0.98 MPa).In adolescent patient with cervical disc herniation,the stress in the small joint cartilage significantly increased under different conditions,especially in C1-2,with the maximum stress found during left flexion(3.50 MPa).(5)It is concluded that compared to normal adolescent,adolescent patient with cervical disc herniation exhibits altered cervical curvature and a decrease in overall joint motion range in the cervical spine.In adolescent with cervical disc herniation,there is a significant increase in stress on the annulus fibrosus,nucleus pulposus,and endplates in the C7-T1 segment.The stress on the left articular cartilage of the C1-2 is notable.Abnormal cervical curvature may be the primary factor causing these stress changes.
		                        		
		                        		
		                        		
		                        	
5.Advances in the application of digital technology in orthodontic monitoring
WANG Qi ; LUO Ting ; LU Wei ; ZHAO Tingting ; HE Hong ; HUA Fang
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(1):75-81
		                        		
		                        			
		                        			During orthodontic treatment, clinical monitoring of patients is a crucial factor in determining treatment success. It aids in timely problem detection and resolution, ensuring adherence to the intended treatment plan. In recent years, digital technology has increasingly permeated orthodontic clinical diagnosis and treatment, facilitating clinical decision-making, treatment planning, and follow-up monitoring. This review summarizes recent advancements in digital technology for monitoring orthodontic tooth movement, related complications, and appliance-wearing compliance. It aims to provide insights for researchers and clinicians to enhance the application of digital technology in orthodontics, improve treatment outcomes, and optimize patient experience. The digitization of diagnostic data and the visualization of dental models make chair-side follow-up monitoring more convenient, accurate, and efficient. At the same time, the emergence of remote monitoring technology allows orthodontists to promptly identify oral health issues in patients and take corresponding measures. Furthermore, the multimodal data fusion method offers valuable insights into the monitoring of the root-alveolar relationship. Artificial intelligence technology has made initial strides in automating the identification of orthodontic tooth movement, associated complications, and patient compliance evaluation. Sensors are effective tools for monitoring patient adherence and providing data-driven support for clinical decision-making. The application of digital technology in orthodontic monitoring holds great promise. However, challenges like technical bottlenecks, ethical considerations, and patient acceptance remain.
		                        		
		                        		
		                        		
		                        	
6.Herbal Textual Research on Picrorhizae Rhizoma in Famous Classical Formulas
Feng ZHOU ; Yihan WANG ; Yanmeng LIU ; Xiaoqin ZHAO ; Kaizhi WU ; Cheng FENG ; Wenyue LI ; Wei ZHANG ; Wentao FANG ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):228-239
		                        		
		                        			
		                        			This article systematically analyzes the historical evolution of the name, origin, quality evaluation, harvesting, processing and other aspects of Picrorhizae Rhizoma by referring to the medical books, prescription books, and other documents of the past dynasties, combined with relevant modern research materials, in order to provide a basis for the development and utilization of famous classical formulas containing this medicinal herb. The research results indicate that Picrorhizae Rhizoma was first recorded in New Revised Materia Medica from the Tang dynasty. Throughout history, Huhuanglian has been used as its official name, and there are also aliases such as Gehu Luze, Jiahuanglian and Hulian. The main source of past dynasties is the the rhizomes of Picrorhiza kurrooa and P. scrophulariiflora. In ancient times, Picrorhizae Rhizoma was mainly imported by foreign traders via Guangzhou and other regions, and also produced in China, mainly in Xizang. In ancient times, it was harvested and dried in early August of the lunar calendar, while in modern times, it is mostly harvested from July to September, with the best quality being those with thick and crispy rhizomes without impurities, and bitter taste. Throughout history, Picrorhizae Rhizoma was collected, washed, sliced, and dried before being used as a raw material for medicine, it has a bitter and cold taste, mainly used to treat bone steaming, hot flashes, infantile chancre fever, and dysentery. There is no significant difference in taste and efficacy between ancient and modern times. Based on the research results, it is recommended that the rhizomes of P. scrophulariiflora in the 2020 edition of Chinese Pharmacopoeia, or the rhizomes of P. kurrooa, can be used in famous classical formulas containing this medicinal herb, which can be processed according to the processing requirements marked by the original formula. For those without clear processing requirements, the dried raw products are used as medicine. 
		                        		
		                        		
		                        		
		                        	
7.Performance of body mass index, waist circumference and waist-to-height ratio in screening true obesity in children
FANG Qihuan, WANG Yuedong, ZHAO Min, YANG Lili, XI Bo
Chinese Journal of School Health 2025;46(3):421-425
		                        		
		                        			Objective:
		                        			To evaluate the accuracy of body mass index (BMI), waist circumference (WC) and waist-to-height ratio (WHtR) in screening true obesity among children, so as to provide a scientific basis for precise screening and early prevention and control of childhood obesity.
		                        		
		                        			Methods:
		                        			A total of 1 322 children aged 10-15 years old were surveyed by the Huantai Children Cardiovascular Health Cohort in 2021. Fat mass percentage (FMP) and fat mass index (FMI) were measured by bioelectrical impedance analysis, with FMP or FMI values at or above the age and sex-specific 70th percentiles as the criteria for defining true obesity. BMI, WC and WHtR were used to define general obesity and central obesity. The accuracy of these measures in screening for true obesity was evaluated by calculating the missed diagnosis rate, misdiagnosis rate, area under the curve(AUC) for receiver operating characteristic and  Kappa  coefficient.
		                        		
		                        			Results:
		                        			Boys had higher BMI [(21.79±4.56) kg/m 2], WC [(76.41±12.53) cm] and WHtR (0.47±0.07) than girls [(20.83±4.13) kg/m 2, (70.69±10.06) cm, (0.45±0.06)] ( t =4.02, 9.19, 6.63), while boys had lower FMP [(18.29±8.35)%] and FMI [(4.35±2.79) kg/m 2] than girls [(24.87±6.51)%, (5.44±2.53) kg/m 2] ( t =-16.10,-7.42) ( P <0.01). Using FMP as a reference standard, the diagnosis error rates of screening for true obesity based on BMI, WC and WHtR were 12.24%, 2.11% and 2.11%, respectively; the diagnosis error rates were 10.88%, 27.28% and 24.33%; the AUC values were 0.88, 0.85 and 0.87; the  Kappa  coefficients were 0.67, 0.48 and 0.52. Using FMI as a reference standard, rates of BMI, WC and WHtR screening for true obesity were 14.20%, 1.23% and 2.78%; the diagnosis error rates were 4.81%, 20.84% and  18.14 %; the AUC values were 0.90, 0.89 and 0.90; the  Kappa  coefficients were 0.81, 0.64 and 0.67.
		                        		
		                        			Conclusions
		                        			BMI has a higher diagnosis error rate in screening for true obesity in children, while WC and WHtR have higher diagnosis error rates. It is recommended to promote body fat assessment in clinical practice, so as to achieve more accurate prevention and control of chronic diseases.
		                        		
		                        		
		                        		
		                        	
8.Analysis of Potential Active Components and Molecular Mechanism of Baoxin Granules Regulating Ferroptosis in Treatment of Heart Failure
Yu CHEN ; Maolin WANG ; Yun WANG ; Yifan ZHAO ; Jing XU ; Hongwei WU ; Fang WANG ; Xiaoang ZHAO ; Youming LI ; Jixiang TIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):202-209
		                        		
		                        			
		                        			ObjectiveBased on ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), network pharmacology, molecular docking and cell experiments, the active ingredients, possible targets and molecular mechanisms of Baoxin granules(BXG) regulating ferroptosis in the treatment of heart failure(HF) were explored. MethodsBXG intestinal absorption fluid was prepared by everted gut sac and the chemical composition contained therein were identified by UPLC-Q-TOF-MS. According to the obtained components, the potential targets of BXG were predicted, and the HF-related targets and related genes of ferroptosis were retrieved at the same time, and the intersecting targets were obtained by Venn diagram. In addition, the protein-protein interaction(PPI) network and the component-target network were constructed, and the core components and core targets were obtained by topological analysis. Then Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis were performed on the core targets, and molecular docking validation of the key targets and main components was carried out by AutoDockTools 1.5.7. H9c2 cells were used to establish a oxygen-glucose deprivation model, and the protective effect of BXG on cells was investigated by detecting cell viability, cell survival rate and reactive oxygen species(ROS) level. The protein expression levels of signal transducer and activator of transcription 3(STAT3), phosphorylation(p)-STAT3 and glutathione peroxidase 4(GPX4) were detected by Western blot to clarify the regulatory effect of BXG on ferroptosis. ResultsA total of 61 chemical components in BXG intestinal absorption fluid were identified, and network pharmacology obtained 27 potential targets of BXG for the treatment of HF, as well as 139 signaling pathways. BXG may act on core targets such as STAT3, tumor protein p53(TP53), epidermal growth factor receptor(EGFR), JUN and prostaglandin-endoperoxide synthase 2(PTGS2) through core components such as glabrolide and limonin, which in turn intervene in lipid and atherosclerosis, phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt), endocrine resistance and other signaling pathways to exert therapeutic effects on HF. Molecular docking showed that the docking results of multiple groups of targets and compounds were good. In vitro cell experiments showed that compared with the blank group, the cell viability and survival rate of the model group were significantly decreased, the level of ROS was significantly increased(P<0.01), the expression levels of STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 proteins were significantly decreased(P<0.05, P<0.01). Compared with the model group, the cell viability and survival rate of the BXG group were significantly increased, the ROS level was significantly decreased(P<0.01), the STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 protein levels were significantly increased(P<0.05, P<0.01). ConclusionBXG may inhibit the occurrence of ferroptosis by up-regulating the expression of STAT3 and GPX4, thus exerting a therapeutic effect on HF, and flavonoids may be the key components of this role. 
		                        		
		                        		
		                        		
		                        	
9.Analysis of Potential Active Components and Molecular Mechanism of Baoxin Granules Regulating Ferroptosis in Treatment of Heart Failure
Yu CHEN ; Maolin WANG ; Yun WANG ; Yifan ZHAO ; Jing XU ; Hongwei WU ; Fang WANG ; Xiaoang ZHAO ; Youming LI ; Jixiang TIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):202-209
		                        		
		                        			
		                        			ObjectiveBased on ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), network pharmacology, molecular docking and cell experiments, the active ingredients, possible targets and molecular mechanisms of Baoxin granules(BXG) regulating ferroptosis in the treatment of heart failure(HF) were explored. MethodsBXG intestinal absorption fluid was prepared by everted gut sac and the chemical composition contained therein were identified by UPLC-Q-TOF-MS. According to the obtained components, the potential targets of BXG were predicted, and the HF-related targets and related genes of ferroptosis were retrieved at the same time, and the intersecting targets were obtained by Venn diagram. In addition, the protein-protein interaction(PPI) network and the component-target network were constructed, and the core components and core targets were obtained by topological analysis. Then Gene Ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis were performed on the core targets, and molecular docking validation of the key targets and main components was carried out by AutoDockTools 1.5.7. H9c2 cells were used to establish a oxygen-glucose deprivation model, and the protective effect of BXG on cells was investigated by detecting cell viability, cell survival rate and reactive oxygen species(ROS) level. The protein expression levels of signal transducer and activator of transcription 3(STAT3), phosphorylation(p)-STAT3 and glutathione peroxidase 4(GPX4) were detected by Western blot to clarify the regulatory effect of BXG on ferroptosis. ResultsA total of 61 chemical components in BXG intestinal absorption fluid were identified, and network pharmacology obtained 27 potential targets of BXG for the treatment of HF, as well as 139 signaling pathways. BXG may act on core targets such as STAT3, tumor protein p53(TP53), epidermal growth factor receptor(EGFR), JUN and prostaglandin-endoperoxide synthase 2(PTGS2) through core components such as glabrolide and limonin, which in turn intervene in lipid and atherosclerosis, phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt), endocrine resistance and other signaling pathways to exert therapeutic effects on HF. Molecular docking showed that the docking results of multiple groups of targets and compounds were good. In vitro cell experiments showed that compared with the blank group, the cell viability and survival rate of the model group were significantly decreased, the level of ROS was significantly increased(P<0.01), the expression levels of STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 proteins were significantly decreased(P<0.05, P<0.01). Compared with the model group, the cell viability and survival rate of the BXG group were significantly increased, the ROS level was significantly decreased(P<0.01), the STAT3, p-STAT3, p-STAT3/STAT3 and GPX4 protein levels were significantly increased(P<0.05, P<0.01). ConclusionBXG may inhibit the occurrence of ferroptosis by up-regulating the expression of STAT3 and GPX4, thus exerting a therapeutic effect on HF, and flavonoids may be the key components of this role. 
		                        		
		                        		
		                        		
		                        	
10.Effects of miR-204-3p inhibitor on epithelial-mesenchymal transition and silicosis fibrosis in silicon dioxide-induced alveolar epithelial cells
Fang CHEN ; Jing YU ; Wenxuan HU ; Yangyang PI ; Xi ZHANG ; Luning WANG ; Ping ZHAO ; Faxuan WANG
Journal of Environmental and Occupational Medicine 2025;42(5):622-629
		                        		
		                        			
		                        			Background The pathogenesis of silicosis has not been fully elucidated, and microRNAs (miRNA) may be involved in the occurrence and development of silicosis. Objective To investigate the effect of miR-204-3p inhibitor on the epithelial-mesenchymal transition (EMT) process and silicosis fibrosis in silicon dioxide dust-induced alveolar epithelial cells. Methods A co-culture model of macrophages and epithelial cells was established using a Transwell chamber. NR8383 macrophages were seeded into the upper chamber of the Transwell, and RLE-6TN cells were seeded into the lower chamber. After 24 h of culture, the medium in the lower chamber was discarded, washed three times with phosphate-buffered saline (PBS), and replaced with serum-free medium. The cells were divided into four groups: control group, silicosis group, miRNA NC group, and miR-204-3p inhibitor group. The lower chamber was transfected with miRNA NC for the miRNA NC group or the miR-204-3p inhibitor for the miR-204-3p inhibitor group. The lower chambers of the remaining two groups were added by equal amounts of serum-free medium. After 24 h, except for the control group that received an equal volume of serum-free medium, the upper chambers of the remaining three groups were treated with 800 μg·mL−1 silicon dioxide dust. Morphological changes in each group were observed under a microscope. The mRNA and protein expression levels of EMT-related factors, including α-smooth muscle actin (α-SMA), Vimentin, N-Cadherin, and E-Cadherin, were detected by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and Western blot. The mRNA and protein expression levels of fibrosis-related factors, including Collagen I, Collagen III, and Fibronectin, were also assessed by RT-qPCR and Western blot. The fluorescence expression intensities of α-SMA, N-Cadherin, and E-Cadherin were evaluated by immunofluorescence. Results The morphological observation revealed that RLE-6TN cells in the control group exhibited a regular oval shape. After treatment with silicon dioxide, the cells predominantly displayed a long spindle shape. Following the intervention with the miR-204-3p inhibitor, the number of long spindle-shaped cells increased, and the intercellular gaps widened. The RT-qPCR results showed that, compared with the control group, the silicosis group exhibited significantly higher relative mRNA expression levels of EMT-related markers (α-SMA, Vimentin, and N-Cadherin) (P<0.05), while the relative mRNA expression level of E-Cadherin was significantly reduced (P<0.05); the relative mRNA expression levels of fibrosis-related markers (Collagen I, Collagen III, and Fibronectin) were also significantly elevated (P<0.05). Compared with the miRNA NC group, the miR-204-3p inhibitor group showed significantly increased relative mRNA expression levels of α-SMA, Vimentin, and N-Cadherin (P<0.05), decreased E-Cadherin mPNA expression (P<0.05), and elevated mPNA expression of Collagen I, Collagen III, and Fibronectin (P<0.05). The Western blot analysis indicated that, compared with the control group, the silicosis group had significantly higher protein expression levels of α-SMA, Vimentin, and N-Cadherin (P<0.05), lower E-Cadherin protein expression (P<0.05), and increased protein expression of Collagen I, Collagen III, and Fibronectin (P<0.05). Compared with the miRNA NC group, the miR-204-3p inhibitor group exhibited significantly elevated protein expression levels of α-SMA, Vimentin, and N-Cadherin (P<0.05), reduced E-Cadherin expression (P<0.05), and increased protein expression of Collagen I, Collagen III, and Fibronectin (P<0.05). The immunofluorescence analysis demonstrated that, compared with the control group, the silicosis group showed enhanced fluorescence intensities of α-SMA and N-Cadherin and reduced fluorescence intensity of E-Cadherin. Compared with the miRNA NC group, the miR-204-3p inhibitor group exhibited increased fluorescence intensities of α-SMA and N-Cadherin and decreased fluorescence intensity of E-Cadherin. Conclusion The miR-204-3p inhibitor may exacerbate the EMT process and silicosis fibrosis in silicon dioxide-induced RLE-6TN cells. miR-204-3p plays a negative regulatory role in silicosis fibrosis.
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail