1.Gualou Xiebai Banxiatang in Treatment of Cardiovascular Diseases: A Review
Yalong KANG ; Bo NING ; Juanjuan TAN ; Hongfei QI ; Yan SHI ; Fang GUAN ; Haifang WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):256-267
Cardiovascular diseases (CVD),a group of common diseases in clinical practice,are witnessing a steady rise in both incidence and mortality rates,posing a challenge to public health. Gualou Xiebai Banxiatang,originating from Synopsis of the Golden Chamber (《金匮要略》),was initially used to treat severe cases of chest impediment. The formula consists of Trichosanthis Fructus,Allii Macrostemonis Bulbus,Pinelliae Rhizoma,and Baijiu. It has a wide range of clinical applications,with therapeutic effects including moving Qi to relieve depression,activating Yang to dissipate mass,and expelling phlegm to alleviate chest congestion. In recent years,clinical research has confirmed that Gualou Xiebai Banxiatang,with or without modification,used alone or in combination with Western medicine,has definite effects in the treatment of CVD such as hyperlipidemia,coronary atherosclerotic heart disease,hypertension,heart failure,and arrhythmia. It can alleviate disease symptoms and reduce the risk of re-hospitalization. Basic research indicates that the mechanisms of Gualou Xiebai Banxiatang include improving endothelial functions,exhibiting anti-inflammatory properties,countering oxidative stress,preventing apoptosis,inhibiting ventricular remodeling,regulating mitochondrial functions,improving hemorheology,and modulating autophagy and neurotransmitters. This article reviews relevant articles in recent years with focuses on the compatibility,clinical application,and mechanism of Gualou Xiebai Banxiatang. This review is expected to provide a theoretical basis for the mechanism research and clinical application of this formula in treating CVD and to offer ideas and reference for in-depth research.
2.The Effect of Banxia Xiexin Decoction (半夏泻心汤) on the Expression of LXRα in Liver Tissue and the JAK2/STAT3 Signaling Pathway in Gastric Antrum Tissue of Diabetic Gastroparesis Model Rats
Qi XU ; Nuobing RUAN ; Jinju LI ; Xijuan LYU ; Zhaohui FANG
Journal of Traditional Chinese Medicine 2025;66(2):178-187
ObjectiveTo explore the potential mechanism of Banxia Xiexin Decoction (半夏泻心汤, BXD) in the treatment of diabetic gastroparesis (DGP). MethodsA total of 29 SD rats were randomly divided into four groups, blank group (5 rats) and model group, BXD group and metformin group (8 rats in each group). Except for the blank group, rats were administered intraperitoneally with 1% streptozotocin (STZ) solution and were fed a high-sugar, high-fat diet to establish the DGP rat model. After successful modeling, the BXD group was treated with BXD at 6.68 g/(kg·d) by gavage, the metformin group was treated with metformin hydrochloride at 105 mg/(kg·d) by gavage, and the blank group and the model group were treated with normal saline at 6.68 ml/(kg·d) by gavage, for 8 weeks. After the last administration, fasting blood glucose (FBG), glycated hemoglobin (HbA1c), total cholesterol (TC), triglycerides (TG) were measured and gastric emptying rate was calculated. ELISA was used to detect the levels of gastrointestinal hormones motilin (MTL) and gastrin (GAS), as well as inflammatory factors including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and interleukin-10 (IL-10) in gastric tissue. Oil red O staining was performed to observe liver pathological morphology. Hematoxylin and eosin (HE) staining was used to observe gastric antrum tissue morphology. Immunofluorescence staining was used to detect liver X receptor α (LXRα) levels in the liver. Western Blot was used to detect the protein levels of LXRα in liver tissue, and of janus kinase 2 (JAK2), phospho-janus kinase 2 (p-JAK2), signal transducer and activator of transcription 3 (STAT3) and phospho-signal transducer and activator of transcription 3 (p-STAT3) in gastric antrum tissue. Quantitative real-time polymerase chain reaction (qPCR) was used to measure the mRNA expression of LXRα in liver tissue and JAK2, STAT3 in gastric antrum tissue. ResultsCompared with the blank group, the model group showed significant hepatic fatty degeneration, gastric antrum tissue structure destruction, and increases in FBG, HbA1c, TC, and TG levels; the average fluorescence intensity, protein level, and mRNA expression of LXRα in liver tissue were reduced; the gastric emptying rate and gastric tissue GAS and MTL levels decreased; inflammatory factors including TNF-α, IL-6, IL-1β in gastric tissue increased, IL-10 decreased; in gastric antrum tissue, the mRNA expression of p-JAK2/JAK2, p-STAT3/STAT3, and JAK2 and STAT3 increased (P<0.01). Compared with the model group, both the BXD group and the metformin group showed improved liver and gastric antrum tissue pathology; FBG, HbA1c, TC, and TG levels decreased, while LXRα fluorescence intensity, protein level, and mRNA expression in liver tissue significantly increased; the gastric emptying rate and the levels of GAS and MTL in gastric tissue were markedly higher; the levels of TNF-α, IL-6, and IL-1β decreased, whereas IL-10 levels increased, p-JAK2/JAK2, p-STAT3/STAT3, and the mRNA expression of JAK2 and STAT3 in gastric antrum tissue decreased (P<0.05 or P<0.01). The BXD group showed higher level than the metformin group in FBG, HbA1c, and TG levels, lower level in gastric emptying rate and gastric tissue GAS content, and higher level in gastric tissue TNF-α, IL-6, IL-1β levels; there was also a decrease in IL-10 levels, and a reduction in LXRα fluorescence intensity and mRNA expression in liver tissue, as well as in p-JAK2/JAK2 levels in gastric antrum tissue (P<0.05 or P<0.01). ConclusionBXD can reduce blood glucose and lipid levels in DGP model rats while improving gastric function and alleviating gastric tissue inflammation. Its mechanism may be related to the regulation of LXRα expression in liver tissue and the JAK2/STAT3 pathway in gastric antrum tissue.
3.Advances in the application of digital technology in orthodontic monitoring
WANG Qi ; LUO Ting ; LU Wei ; ZHAO Tingting ; HE Hong ; HUA Fang
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(1):75-81
During orthodontic treatment, clinical monitoring of patients is a crucial factor in determining treatment success. It aids in timely problem detection and resolution, ensuring adherence to the intended treatment plan. In recent years, digital technology has increasingly permeated orthodontic clinical diagnosis and treatment, facilitating clinical decision-making, treatment planning, and follow-up monitoring. This review summarizes recent advancements in digital technology for monitoring orthodontic tooth movement, related complications, and appliance-wearing compliance. It aims to provide insights for researchers and clinicians to enhance the application of digital technology in orthodontics, improve treatment outcomes, and optimize patient experience. The digitization of diagnostic data and the visualization of dental models make chair-side follow-up monitoring more convenient, accurate, and efficient. At the same time, the emergence of remote monitoring technology allows orthodontists to promptly identify oral health issues in patients and take corresponding measures. Furthermore, the multimodal data fusion method offers valuable insights into the monitoring of the root-alveolar relationship. Artificial intelligence technology has made initial strides in automating the identification of orthodontic tooth movement, associated complications, and patient compliance evaluation. Sensors are effective tools for monitoring patient adherence and providing data-driven support for clinical decision-making. The application of digital technology in orthodontic monitoring holds great promise. However, challenges like technical bottlenecks, ethical considerations, and patient acceptance remain.
4.Prognostic Factors of Liposarcoma in Head and Neck
Shuo DING ; Zhigang HUANG ; Jugao FANG ; Yang ZHANG ; Lizhen HOU ; Wei GUO ; Gaofei YIN ; Qi ZHONG
Cancer Research on Prevention and Treatment 2025;52(1):31-35
Objective To explore the pathogenesis and prognostic factors of liposarcoma in the head and neck region, and simultaneously analyze the efficacy of different treatment regimens. Methods A retrospective analysis was performed on all patients with primary untreated head and neck liposarcoma who were diagnosed and underwent surgical treatment at our hospital from January 2008 to January 2024. All patients were monitored during follow-up, and their prognoses were analyzed using SPSS software. Results A total of 30 patients were included in the study. Liposarcoma accounted for up to 60% of the cases in the orbit, while the remaining liposarcomas were primarily located in various interspaces of the neck. Dedifferentiated liposarcoma was the most common type, comprising 33%, while myxoid pleomorphic liposarcoma was the rarest at 4%. The tumor pathological type (P<0.001) and Ki67 (P=0.014) significantly affected the tumor control rate. However, an analysis of disease-specific survival rates revealed no significant differences across various factors (all P>0.05). Conclusion The prognosis of head and neck liposarcoma is better compared to that of liposarcomas in other parts of the body. However, myxoid pleomorphic liposarcoma, pleomorphic fat sarcoma, and high Ki67 levels are indicators of poor prognosis. Additionally, postoperative adjuvant radiotherapy does not significantly enhance disease-specific survival rates.
5.DIA Proteomics Reveals Mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis Extract in Treating α-Syn Transgenic Parkinson's Disease in Mice
Qi ZHENG ; Yi LU ; Donghua YU ; Liangyou ZHAO ; Chunsheng LIN ; Fang LU ; Shumin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):40-50
ObjectiveTo investigate the mechanism of Acanthopanacis Senticosi Radix et Rhizoma seu Caulis extract (ASH) in treating Parkinson's disease (PD) in mice by Data-Independent Acquisition (DIA) proteomics. MethodsThe α-Synuclein (α-Syn) transgenic PD mice were selected as suitable models for PD, and they were randomly assigned into PD, ASH (61.25 mg·kg-1), and Madopar (97.5 mg·kg-1) groups. Male C57BL/6 mice of the same age were selected as the control group, with eight mice in each group. Mice were administrated with corresponding drugs by gavage once a day for 20 days. The pole climbing time and the number of autonomic activities were recorded to evaluate the exercise ability of mice. Hematoxylin-eosin staining was employed to observe neuronal changes in the substantia nigra of PD mice. Immunohistochemistry (IHC) was employed to measure the tyrosine hydroxylase (TH) activity in the substantia nigra and assess the areal density of α-Syn in the striatum. DIA proteomics was used to compare protein expression in the substantia nigra between groups. IHC was utilized to validate key differentially expressed proteins, including Lactotransferrin, Notch2, Ndrg2, and TMEM 166. The cell counting kit-8 (CCK-8) method was used to investigate the effect of ASH on the viability of PD cells with overexpression of α-Syn. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the protein and mRNA levels of Lactotransferrin, Notch2, Ndrg2, and TMEM 166 in PD cells. ResultsCompared with the control group, the model group showed prolonged pole climbing time, diminished coordination ability, reduced autonomic activities (P<0.01), and reduced swelling neurons. Compared with the model group, ASH and Madopar reduced the climbing time, increased autonomic activities (P<0.01), and ameliorated neuronal damage. Compared with the control group, the model group showed a decrease in TH activity in the substantia nigra and an increase in α-Syn accumulation in the striatum (P<0.01). Compared with the model group, the ASH group showed an increase in TH activity and a reduction in α-Syn accumulation (P<0.05). DIA proteomics revealed a total of 464 differentially expressed proteins in the model group compared with the control group, with 323 proteins being up-regulated and 141 down-regulated. A total of 262 differentially expressed proteins were screened in the ASH group compared with the model group, including 85 proteins being up-regulated and 177 down-regulated. Kyoto encylopedia of genes and genomes (KEGG) pathway analysis indicated that ASH primarily regulated the Notch signaling pathway. The model group showed up-regulation in protein levels of Notch2, Ndrg2, and TMEM 166 and down-regulation in the protein level of Lactotransferrin compared with the control group (P<0.01). Compared with the model group, ASH down-regulated the protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.05) while up-regulating the protein level of Lactotransferrin (P<0.01). The IHC results corroborated the proteomics findings. The cell experiment results showed that compared with the control group, the modeling up-regulated the mRNA and protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.01), while down-regulating the mRNA and protein levels of Lactotransferrin (P<0.01). Compared with the model group, ASH reduced the mRNA and protein levels of Notch2, Ndrg2, and TMEM 166 (P<0.01), while increasing the mRNA and protein levels of Lactotransferrin (P<0.05, P<0.01). ConclusionASH may Synergistically inhibit the Notch signaling pathway and mitigate neuronal damage by down-regulating the expression of Notch2 and Ndrg2. Additionally, by up-regulating the expression of Lactotransferrin and down-regulating the expression of TMEM166, ASH can address brain iron accumulation, intervene in ferroptosis, inhibit mitophagy, and mitigate reactive oxygen species damage, thereby protecting nerve cells and contributing to the treatment of PD.
6.Therapeutic Study on The Inhibition of Neuroinflammation in Ischemic Stroke by Induced Regulatory T Cells
Tian-Fang KANG ; Ai-Qing MA ; Li-Qi CHEN ; Han GONG ; Jia-Cheng OUYANG ; Fan PAN ; Hong PAN ; Lin-Tao CAI
Progress in Biochemistry and Biophysics 2025;52(4):946-956
ObjectiveNeuroinflammation plays a crucial role in both the onset and progression of ischemic stroke, exerting a significant impact on the recovery of the central nervous system. Excessive neuroinflammation can lead to secondary neuronal damage, further exacerbating brain injury and impairing functional recovery. As a result, effectively modulating and reducing neuroinflammation in the brain has become a key therapeutic strategy for improving outcomes in ischemic stroke patients. Among various approaches, targeting immune regulation to control inflammation has gained increasing attention. This study aims to investigate the role of in vitro induced regulatory T cells (Treg cells) in suppressing neuroinflammation after ischemic stroke, as well as their potential therapeutic effects. By exploring the mechanisms through which Tregs exert their immunomodulatory functions, this research is expected to provide new insights into stroke treatment strategies. MethodsNaive CD4+ T cells were isolated from mouse spleens using a negative selection method to ensure high purity, and then they were induced in vitro to differentiate into Treg cells by adding specific cytokines. The anti-inflammatory effects and therapeutic potential of Treg cells transplantation in a mouse model of ischemic stroke was evaluated. In the middle cerebral artery occlusion (MCAO) model, after Treg cells transplantation, their ability to successfully migrate to the infarcted brain region and their impact on neuroinflammation levels were examined. To further investigate the role of Treg cells in stroke recovery, the changes in cytokine expression and their effects on immune cell interactions was analyzed. Additionally, infarct size and behavioral scores were measured to assess the neuroprotective effects of Treg cells. By integrating multiple indicators, the comprehensive evaluation of potential benefits of Treg cells in the treatment of ischemic stroke was performed. ResultsTreg cells significantly regulated the expression levels of both pro-inflammatory and anti-inflammatory cytokines in vitro and in vivo, effectively balancing the immune response and suppressing excessive inflammation. Additionally, Treg cells inhibited the activation and activity of inflammatory cells, thereby reducing neuroinflammation. In the MCAO mouse model, Treg cells were observed to accumulate in the infarcted brain region, where they significantly reduced the infarct size, demonstrating their neuroprotective effects. Furthermore, Treg cell therapy notably improved behavioral scores, suggesting its role in promoting functional recovery, and increased the survival rate of ischemic stroke mice, highlighting its potential as a promising therapeutic strategy for stroke treatment. ConclusionIn vitro induced Treg cells can effectively suppress neuroinflammation caused by ischemic stroke, demonstrating promising clinical application potential. By regulating the balance between pro-inflammatory and anti-inflammatory cytokines, Treg cells can inhibit immune responses in the nervous system, thereby reducing neuronal damage. Additionally, they can modulate the immune microenvironment, suppress the activation of inflammatory cells, and promote tissue repair. The therapeutic effects of Treg cells also include enhancing post-stroke recovery, improving behavioral outcomes, and increasing the survival rate of ischemic stroke mice. With their ability to suppress neuroinflammation, Treg cell therapy provides a novel and effective strategy for the treatment of ischemic stroke, offering broad application prospects in clinical immunotherapy and regenerative medicine.
7.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
8.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
9.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
10.Artificial intelligence-based systematic study on the multidimensional pharmacological activity and molecular mechanism of the active ingredients of Artemisia argyi
Hongrong ZHANG ; Qi ZOU ; Zhongmin MA ; Zhaohui FANG
Journal of China Pharmaceutical University 2025;56(3):358-367
To investigate the pharmacological activities and potential mechanisms of action of the active components in Artemisia argyi with artificial intelligence technology, a search was conducted in the HIT, TCMSP, and TCMIO databases, obtaining 199 active components of A. argyi. A comprehensive set of algorithms, including KNN, MLP, RF, SVM, and models based on Lipinski’s and Veber’s rules, was employed to predict the toxicity and oral bioavailability of A. argyi compounds, identifying 14 components that are non-toxic and have good oral bioavailability. The synthetic accessibility score (SAscore) model was used to analyze the synthetic accessibility of the 14 components mentioned above, and molecular segments were fragmented using BRICS and RECAP algorithms. Mining of the STP and PM databases yielded 406 target proteins for the core components of A. argyi, and Cytoscape was used to screen out 5 core targets: SRC, EGFR, PTPN11, HRAS, and PDGFRB. GO and KEGG enrichment analyses indicated that the core targets were involved in 808 GO enrichment analysis entries and 71 signaling pathways, including EGFR tyrosine kinase inhibitor resistance, gap junction, phospholipase D, and JAK/STAT. Molecular docking results showed that active compounds of A. argyi have a good binding affinity with proteins SRC, EGFR, PTPN11, and HRAS. Cellular experiments have confirmed that ledol, an active component of A. argyi, can promote the proliferation of HUVEC cells within a certain concentration range and can increase the expression of EGFR protein. This study reveals the pharmacological characteristics and potential molecular mechanisms of the active components of A. argyi and lays a solid scientific foundation for its medicinal development.


Result Analysis
Print
Save
E-mail