1.Construction and validation of a predictive model for visual outcome after vitrectomy for polypoidal choroidal vasculopathy combined with vitreous hemorrhage
Qing XIAO ; Chenwei LIU ; Lingna LI ; Guangbao TANG ; Mingxia DONG ; Dongyu LI ; Fang LIU
International Eye Science 2025;25(2):274-280
AIM:To analyze the influencing factors of visual outcome after vitrectomy for polypoidal choroidal vasculopathy(PCV)combined with vitreous hemorrhage and establish a predictive model.METHODS: A retrospective analysis was conducted on the clinical data of 129 cases(129 eyes)of patients who underwent vitrectomy for PCV combined with vitreous hemorrhage from June 2021 to January 2024 in our hospital. They were divided into elevated group(71 eyes)and non-elevated group(58 eyes)according to visual outcome at early posoperative stage(within 24 mo). Another 30 cases(30 eyes)of PCV with vitreous hemorrhage undergoing vitrectomy were selected as external validation data. The predictive value of the model for the postoperative visual outcomes of both internal and external populations was evaluated.RESULTS: The non-elevated group had a higher proportion of patients aged ≥60 years, diabetes, continuous abnormalities of the ellipsoid zone(EZ)during surgery, bleeding involving the macular fovea, and postoperative retinal scar formation than the elevated group were independent factors affecting postoperative visual acuity(all P<0.05). The AUC of the predictive model for predicting the postoperative visual outcomes of internal and external populations was 0.824(95%CI: 0.750-0.898)and 0.809(95%CI: 0.723-0.865), respectively.CONCLUSION:Patients aged ≥60 years, diabetes, intraoperative continuous abnormalities of EZ, bleeding involving the macular fovea, and postoperative retinal scar formation are influencing factors for visual outcome after vitrectomy in patients with PCV combined with vitreous hemorrhage. A predictive model based on those factors has been established, which has a certain predictive value for postoperative visual outcome.
2.Controllability Analysis of Structural Brain Networks in Young Smokers
Jing-Jing DING ; Fang DONG ; Hong-De WANG ; Kai YUAN ; Yong-Xin CHENG ; Juan WANG ; Yu-Xin MA ; Ting XUE ; Da-Hua YU
Progress in Biochemistry and Biophysics 2025;52(1):182-193
ObjectiveThe controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers. MethodsFifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerström Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers. ResultsThe average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus, supplementary motor area, gyrus rectus, and posterior cingulate gyrus in the young smokers’ group, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2). ConclusionThe controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers.
3.Explore of nanopore sequencing technology in ambiguities of HLA genotyping
Nanying CHEN ; Wei ZHANG ; Lina DONG ; Fang WANG ; Yizhen HE ; Chen CHEN ; Faming ZHU
Chinese Journal of Blood Transfusion 2025;38(3):309-315
[Objective] To resolve the ambiguities of HLA genotyping generated by next generation sequencing (NGS) using nanopore sequencing technology. [Methods] A total of 38 samples with ambiguous HLA genotyping by NGS in our laboratory were collected, and HLA-A, -B, -C, -DRB1, -DRB3/4/5, -DQA1, -DQB1, -DPA1 and -DPB1 loci in these samples were amplified using primers in the same commercial NGS HLA genotyping kit, then subjected to third-generation library construction, and sequenced on the nanopore sequencer. The sequencing data were converted into Fastq files and analyzed by software, and the genotypes of 11 HLA loci were obtained. The ambiguities were counted directly. [Results] The high-resolution genotyping at the second domain of 11 HLA loci of 38 samples using the third generation sequencing (TGS) were consistent with the results of the NGS method at a rate of 100%. The genotypes for the HLA-A, -B, -C, -DRB3, -DRB4, -DQA1 and -DPA1 loci by TGS were all only one result, and the discrimination rate for ambiguities of the HLA-A, -B, -C, and -DQA1 loci (all caused by the difficulty in phasing due to the short NGS read length) was 100%. Among the HLA-DRB1, -DRB5, -DQB1 and -DPB1 loci, the discrimination rate of TGS for the ambiguities caused by non-amplification of exon 1 was 0% and by the short NGS read length was 100%. [Conclusion] Nanopore technology was used to identify the ambiguities of 11 HLA loci in this study, and the ambiguities caused by the short read length disadvantage of the NGS method could be solved effectively and the accuracy of HLA genotyping would be improved.
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
6.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
7.Interpretation of the CONSORT 2025 statement: Updated guideline for reporting randomized trials
Geliang YANG ; Xiaoqin ZHOU ; Fang LEI ; Min DONG ; Tianxing FENG ; Li ZHENG ; Lunxu LIU ; Yunpeng ZHU ; Xuemei LIU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(06):752-759
The Consolidated Standards of Reporting Trials (CONSORT) statement aims to enhance the quality of reporting for randomized controlled trial (RCT) by providing a minimum item checklist. It was first published in 1996, and updated in 2001 and 2010, respectively. The latest version was released in April 2025, continuously reflecting new evidence, methodological advancements, and user feedback. CONSORT 2025 includes 30 essential checklist items and a template for a participant flow diagram. The main changes to the checklist include the addition of 7 items, revision of 3 items, and deletion of 1 item, as well as the integration of multiple key extensions. This article provides a comprehensive interpretation of the statement, aiming to help clinical trial staff, journal editors, and reviewers fully understand the essence of CONSORT 2025, correctly apply it in writing RCT reports and evaluating RCT quality, and provide guidance for conducting high-level RCT research in China.
8.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
10.No Incidence of Liver Cancer Was Observed in A Retrospective Study of Patients with Aristolochic Acid Nephropathy.
Tao SU ; Zhi-E FANG ; Yu-Ming GUO ; Chun-Yu WANG ; Jia-Bo WANG ; Dong JI ; Zhao-Fang BAI ; Li YANG ; Xiao-He XIAO
Chinese journal of integrative medicine 2024;30(2):99-106
OBJECTIVE:
To assess the risk of aristolochic acid (AA)-associated cancer in patients with AA nephropathy (AAN).
METHODS:
A retrospective study was conducted on patients diagnosed with AAN at Peking University First Hospital from January 1997 to December 2014. Long-term surveillance and follow-up data were analyzed to investigate the influence of different factors on the prevalence of cancer. The primary endpoint was the incidence of liver cancer, and the secondary endpoint was the incidence of urinary cancer during 1 year after taking AA-containing medication to 2014.
RESULTS:
A total of 337 patients diagnosed with AAN were included in this study. From the initiation of taking AA to the termination of follow-up, 39 patients were diagnosed with cancer. No cases of liver cancer were observed throughout the entire follow-up period, with urinary cancer being the predominant type (34/39, 87.17%). Logistic regression analysis showed that age, follow-up period, and diabetes were potential risk factors, however, the dosage of the drug was not significantly associated with urinary cancer.
CONCLUSIONS
No cases of liver cancer were observed at the end of follow-up. However, a high prevalence of urinary cancer was observed in AAN patients. Establishing a direct causality between AA and HCC is challenging.
Humans
;
Retrospective Studies
;
Incidence
;
Carcinoma, Hepatocellular
;
Liver Neoplasms/epidemiology*
;
Kidney Diseases/chemically induced*
;
Aristolochic Acids/adverse effects*

Result Analysis
Print
Save
E-mail