1.Effect of Yiqi Wenyang Huoxue Lishui Components on Cardiac Function and Mitochondrial Energy Metabolism in CHF Rats
Hui GAO ; Zeqi YANG ; Xin LIU ; Fan GAO ; Yangyang HAN ; Aiyangzi LU ; Xingchao LIU ; Qiuhong GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):27-36
ObjectiveTo investigate the effects of Yiqi Wenyang Huoxue Lishui components on the cardiac function and mitochondrial energy metabolism in the rat model of chronic heart failure (CHF) and explore the underlying mechanism. MethodsThe rat model of CHF was prepared by transverse aortic constriction (TAC). Eight of the 50 SD rats were randomly selected as the sham group, and the remaining 42 underwent TAC surgery. The 24 SD rats successfully modeled were randomized into model, trimetazidine (6.3 mg·kg-1), and Yiqi Wenyang Huoxue Lishui components (60 mg·kg-1 total saponins of Astragali Radix, 10 mg·kg-1 total phenolic acids of Salviae Miltiorrhizae Radix et Rhizoma, 190 mg·kg-1 aqueous extract of Lepidii Semen, and 100 mg·kg-1 cinnamaldehyde) groups. The rats were administrated with corresponding agents by gavage, and those in the sham and model groups were administrated with the same amount of normal saline at a dose of 10 mL·kg-1 for 8 weeks. Echocardiography was used to examine the cardiac function in rats. Enzyme-linked immunosorbent assay was employed to determine the serum levels of N-terminal pro-B-type natriuretic peptide (NT-ProBNP), hypersensitive troponin(cTnI), creatine kinase (CK), lactate dehydrogenase (LD), free fatty acids (FFA), superoxide dismutase (SOD), and malondialdehyde (MDA). The colorimetric assay was employed to measure the levels of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) in the myocardial tissue. The pathological changes in the myocardial tissue were observed by hematoxylin-eosin staining and Masson staining. The Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities in the myocardial tissue were determined by the colorimetric assay. The ultrastructural changes of myocardial mitochondria were observed by transmission electron microscopy. Western blot was employed to determine the protein levels of ATP synthase subunit delta (ATP5D), glucose transporter 4 (GLUT4), and carnitine palmitoyltransferase-1 (CPT-1). The mitochondrial complex assay kits were used to determine the activities of mitochondrial complexes Ⅰ, Ⅱ, Ⅲ, and Ⅳ. ResultsCompared with the sham group, the model group showed a loosening arrangement of cardiac fibers, fracture and necrosis of partial cardiac fibers, inflammatory cells in necrotic areas, massive blue fibrotic tissue in the myocardial interstitium, increased collagen fiber area and myocardial fibrosis, destroyed mitochondria, myofibril disarrangement, sparse myofilaments, and fractured and reduced cristae. In addition, the rats in the model group showed declined ejection fraction (EF) and fractional shortening (FS), risen left ventricular end-diastolic diameter (LVIDd), left ventricular end-systolic diameter (LVIDs), left ventricular end-diastolic posterior wall thickness (LVPWd), left ventricular end-systolic posterior wall thickness (LVPWs), left ventricular end-diastolic volume (LVVOLd), and left ventricular end-systolic volume (LVVOLs), elevated levels of NT-ProBNP, cTnI, CK, MDA, FFA, and LD, lowered level of SOD, down-regulated protein levels of GLUT4 and CPT-1, decreased activities of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, and respiratory complexes Ⅰ-Ⅳ, and declined levels of ATP5D, ATP, ADP, and AMP (P<0.05, P<0.01). Compared with the model group, the Yiqi Wenyang Huoxue Lishui components and trimetazidine groups showed alleviated pathological damage of the mitochondria and mycardial tissue, risen EF and FS, declined LVIDd, LVIDs, LVPWd, LVPWs, LVVOLd, and LVVOLs, lowered levels of NT-ProBNP, cTnI, CK, MDA, FFA, and LD, elevated level of SOD, up-regulated protein levels of GLUT4 and CPT-1, increased activities of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, and respiratory complexes Ⅰ-Ⅳ, and elevated levels of ATP5D, ATP, ADP, and AMP (P<0.05, P<0.01). ConclusionYiqi Wenyang Huoxue Lishui components can improve the cardiac function, reduce myocardial injury, regulate glucose and lipid metabolism, optimize the utilization of substrates, and alleviate the damage of mitochondrial structure and function, thus improving the energy metabolism of the myocardium in the rat model of CHF.
2.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
3.Simultaneous TAVI and McKeown for esophageal cancer with severe aortic regurgitation: A case report
Liang CHENG ; Lulu LIU ; Xin XIAO ; Lin LIN ; Mei YANG ; Jingxiu FAN ; Hai YU ; Longqi CHEN ; Yingqiang GUO ; Yong YUAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):277-280
A 71-year-old male presented with esophageal cancer and severe aortic valve regurgitation. Treatment strategies for such patients are controversial. Considering the risks of cardiopulmonary bypass and potential esophageal cancer metastasis, we successfully performed transcatheter aortic valve implantation and minimally invasive three-incision thoracolaparoscopy combined with radical resection of esophageal cancer (McKeown) simultaneously in the elderly patient who did not require neoadjuvant treatment. This dual minimally invasive procedure took 6 hours and the patient recovered smoothly without any surgical complications.
4.Gelian Tiaotang Pills Ameliorate Renal Fibrosis in db/db Mice via NLRP3/Caspase-1/GSDMD Pathway
Lihui FAN ; Zhigang WANG ; Xia YANG ; Xiaolong MEI ; Kun ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):136-145
ObjectiveTo investigate the effect of Gelian Tiaotang pills on renal fibrosis in db/db mice based on the nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3 (NLRP3)/cysteinyl aspartate-specific proteinase (Caspase)-1/gasdermin D (GSDMD) signaling pathway. MethodsForty db/db mice were randomly assigned into model, positive control (0.001 3 g·kg·d-1 dapagliflozin suspension), and high-, medium-, and low-dose Gelian Tiaotang pills (3.12, 1.56, and 0.78 g·kg·d-1 suspension of Gelian Tiaotang pills, respectively) groups, with 8 mice in each group. Eight db/m mice were selected as the normal group. The normal group and model group were given equal volumes of pure water, while the drug interventions groups were administrated with corresponding agents by gavage once a day for 12 consecutive weeks. The general conditions of mice were observed daily. The fasting blood glucose (FBG) and body mass were measured every 4 weeks. Kidneys were weighed after sampling, and the kidney index was calculated. An automatic biochemical analyzer was used to measure the serum levels of triglyceride (TG), total cholesterol (TC), serum creatinine (SCr), and blood urea nitrogen (BUN). The pathological changes, extracellular matrix deposition, and renal fibrosis degree were examined by hematoxylin-eosin, periodic acid-schiff (PAS), and Masson staining, respectively. Enzyme-linked immunosorbent assay was employed to measure the levels of interleukin (IL)-1β and IL-18 in the renal tissue. Immunohistochemistry (IHC) was used to detect the localization and expression of fibronectin and collagen Ⅰ in the renal tissue. Western blot was employed to determine the protein levels of NLRP3, Caspase-1, cleaved Caspase-1, GSDMD, and GSDMD-N in the renal tissue. ResultsCompared with the normal group, the model group generally had poor general states and increases in the body mass, kidney weight, kidney index, and levels of FBG, TG, TC, SCr, and BUN (P<0.01). In addition, glomerular pyknosis, increased matrix, vacuolar degeneration of renal tubular epithelial cells, and interstitial infiltration of inflammatory cells were observed in the model group (P<0.01), together with rises in the levels of IL-1β and IL-18 in the renal tissue (P<0.01) and up-regulated protein levels of NLRP3, Caspase-1, cleaved Caspase-1, GSDMD, GSDMD-N, fibronectin, and collagen Ⅰ in the renal tissue (P<0.01). Compared with the model group, 12 weeks of drug interventions reduced the body mass, kidney weight, and kidney index and lowered the levels of FBG, TG, TC, SCr, and BUN in the serum and IL-1β and IL-18 in the renal tissue (P<0.05, P<0.01). Furthermore, drug interventions ameliorated the renal lesions and down-regulated the protein levels of NLRP3, Caspase-1, cleaved Caspase-1, GSDMD, GSDMD-N, fibronectin, and collagen Ⅰ in the renal tissue (P<0.05, P<0.01). The high-dose group of Gelian Tiaotang pills had the best effects. ConclusionGelian Tiaotang pills may inhibit pyroptosis and reduce inflammatory responses by regulating the NLRP3/Caspase-1/GSDMD signaling pathway, thus delaying the process of renal fibrosis in diabetes.
5.Protective Effect of Shengxiantang on Myocardial Microvascular Injury in Rats with Chronic Heart Failure
Hui GAO ; Zeqi YANG ; Fan GAO ; Hongjing LI ; Aiyangzi LU ; Xingchao LIU ; Qiuhong GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):35-42
ObjectiveTo explore the protective effect of Shengxiantang on cardiac function and myocardial microvascular injury in rats with chronic heart failure (CHF). MethodsThe CHF rat model was prepared by aortic arch constriction (TAC). Of the 72 SD rats, 8 were randomly selected as the sham operation group, where the chest was opened without ligating the aortic arch. The 40 successfully modeled rats were randomly divided into the model group, the Shengxiantang low-, medium-, and high-dose groups (5.1, 10.2, 20.4 g·kg-1), and the trimetazidine group (6.3 mg·kg-1), with 8 rats in each group. Drug administration began 4 weeks after modeling. The administration groups received the corresponding drugs by gavage, while the sham operation and model groups were given the same amount of distilled water for 8 consecutive weeks. Echocardiography was used to assess cardiac function. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of nitric oxide (NO), endothelin (ET-1), vascular endothelial growth factor (VEGF), and von Willebrand factor (vWF). Ultrastructural changes of microvessels were observed by transmission electron microscopy. Immunohistochemistry was used to detect the expression levels of ATP synthase subunit (ATP5D) and F-actin in myocardial tissue. Western blot was used to detect the expression levels of occludin, claudin, vascular endothelial cadherin (VE-Cadherin), and zonula occludens-1 (ZO-1). Microvessel density was measured by immunofluorescence staining. ResultsCompared with the sham operation group, the ejection fraction (EF) and left ventricular shortening fraction (FS) in the model group were significantly decreased (P<0.01), while the left ventricular diastolic diameter (LVIDd), left ventricular systolic diameter (LVIDs), left ventricular end-diastolic posterior wall thickness (LVPWd), left ventricular end-systolic posterior wall thickness (LVPWs), left ventricular end-diastolic volume (LVVOLd), and left ventricular end-systolic volume (LVVOLs) were significantly increased (P<0.01). The levels of NO and VEGF were significantly decreased (P<0.01), while the levels of ET-1 and vWF were significantly increased (P<0.01). Under electron microscopy, the microvascular basement membrane was incomplete and the tight junctions were blurred. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin were significantly decreased (P<0.05, P<0.01), and the relative density of microvessels was significantly reduced (P<0.05, P<0.01). After intervention with Shengxiantang, the EF and FS of CHF rats significantly increased (P<0.01), while the LVIDd, LVIDs, LVPWd, LVPWs, LVVOLd, and LVVOLs significantly decreased (P<0.01). The levels of NO and VEGF significantly increased (P<0.01), while the levels of ET-1 and vWF significantly decreased (P<0.01). Under electron microscopy, the microvascular basement membrane was relatively complete and the tight junctions were more continuous. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin significantly increased (P<0.05, P<0.01), and the relative density of microvessels significantly increased (P<0.01). ConclusionShengxiantang can effectively improve the cardiac function of CHF rats, reduce microvascular endothelial injury, strengthen the connection between endothelial cells, and increase microvessel density, thereby protecting myocardial microvascular injury.
6.Protective Effect of Shengxiantang on Myocardial Microvascular Injury in Rats with Chronic Heart Failure
Hui GAO ; Zeqi YANG ; Fan GAO ; Hongjing LI ; Aiyangzi LU ; Xingchao LIU ; Qiuhong GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):35-42
ObjectiveTo explore the protective effect of Shengxiantang on cardiac function and myocardial microvascular injury in rats with chronic heart failure (CHF). MethodsThe CHF rat model was prepared by aortic arch constriction (TAC). Of the 72 SD rats, 8 were randomly selected as the sham operation group, where the chest was opened without ligating the aortic arch. The 40 successfully modeled rats were randomly divided into the model group, the Shengxiantang low-, medium-, and high-dose groups (5.1, 10.2, 20.4 g·kg-1), and the trimetazidine group (6.3 mg·kg-1), with 8 rats in each group. Drug administration began 4 weeks after modeling. The administration groups received the corresponding drugs by gavage, while the sham operation and model groups were given the same amount of distilled water for 8 consecutive weeks. Echocardiography was used to assess cardiac function. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of nitric oxide (NO), endothelin (ET-1), vascular endothelial growth factor (VEGF), and von Willebrand factor (vWF). Ultrastructural changes of microvessels were observed by transmission electron microscopy. Immunohistochemistry was used to detect the expression levels of ATP synthase subunit (ATP5D) and F-actin in myocardial tissue. Western blot was used to detect the expression levels of occludin, claudin, vascular endothelial cadherin (VE-Cadherin), and zonula occludens-1 (ZO-1). Microvessel density was measured by immunofluorescence staining. ResultsCompared with the sham operation group, the ejection fraction (EF) and left ventricular shortening fraction (FS) in the model group were significantly decreased (P<0.01), while the left ventricular diastolic diameter (LVIDd), left ventricular systolic diameter (LVIDs), left ventricular end-diastolic posterior wall thickness (LVPWd), left ventricular end-systolic posterior wall thickness (LVPWs), left ventricular end-diastolic volume (LVVOLd), and left ventricular end-systolic volume (LVVOLs) were significantly increased (P<0.01). The levels of NO and VEGF were significantly decreased (P<0.01), while the levels of ET-1 and vWF were significantly increased (P<0.01). Under electron microscopy, the microvascular basement membrane was incomplete and the tight junctions were blurred. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin were significantly decreased (P<0.05, P<0.01), and the relative density of microvessels was significantly reduced (P<0.05, P<0.01). After intervention with Shengxiantang, the EF and FS of CHF rats significantly increased (P<0.01), while the LVIDd, LVIDs, LVPWd, LVPWs, LVVOLd, and LVVOLs significantly decreased (P<0.01). The levels of NO and VEGF significantly increased (P<0.01), while the levels of ET-1 and vWF significantly decreased (P<0.01). Under electron microscopy, the microvascular basement membrane was relatively complete and the tight junctions were more continuous. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin significantly increased (P<0.05, P<0.01), and the relative density of microvessels significantly increased (P<0.01). ConclusionShengxiantang can effectively improve the cardiac function of CHF rats, reduce microvascular endothelial injury, strengthen the connection between endothelial cells, and increase microvessel density, thereby protecting myocardial microvascular injury.
7.Medical student selection interviews: insights into nonverbal observable communications: a cross-sectional study
Pin-Hsiang HUANG ; Kang-Chen FAN ; Alexander WAITS ; Boaz SHULRUF ; Yi-Fang CHUANG
Korean Journal of Medical Education 2025;37(2):153-161
Purpose:
Interviews play a crucial role in the medical school selection process, although little is known about interviewers’ non-verbal observable communications (NoVOC) during the interviews. This study investigates how interviewers perceive NoVOC exhibited by interviewees in two medical schools, one in Taiwan and the other in Australia. The study also explores potential cross-cultural differences in these perceptions.
Methods:
A 26-item questionnaire was developed using a Delphi-like method to identify NoVOC. Interviewers from the University of New South Wales, Australia, and National Yang Ming Chiao Tung University, Taiwan (n=47 and N=78, respectively) rated these NoVOC between 2018 and 2021. Factor analyses identified and validated underlying factors. Measurement invariance across countries and genders was examined.
Results:
A total of 125 interviewers completed the questionnaire, including 78 from Taiwan and 47 from Australia. Using exploratory factor analysis, 14 items yielded reliable three factors “charming,” “disengaged,” and “anxious” (Cronbach’s α=0.853, 0.714, and 0.628, respectively). The measurement invariance analysis indicated that the factor models were invariant across genders but significantly different between the two countries. Further analysis revealed inconsistencies in interpreting the “anxious” factor between Taiwan and Australia.
Conclusion
The three distinct factors revealed in this study provide valuable insights into the NoVOC that interviewers perceive and evaluate during the interview process. The findings highlight the importance of considering non-verbal communication in selecting medical students and emphasize the need for training and awareness among interviewers. Understanding the impact of non-verbal behaviors can improve selection processes to mitigate bias and enhance the fairness and reliability of medical student selection.
8.Changes in the body shape and ergonomic compatibility for functional dimensions of desks and chairs for students in Harbin during 2010-2024
Chinese Journal of School Health 2025;46(3):315-320
Objective:
To analyze the change trends in the body shape indicators and proportions of students in Harbin from 2010 to 2024, and to investigate ergonomic compatibility of functional dimensions of school desks and chairs with current student shape indicators, so as to provide a reference for revising furniture standards of desks and chairs.
Methods:
Between September and November of both 2010 and 2024, a combination of convenience sampling and stratified cluster random sampling was conducted across three districts in Harbin, yielding samples of 6 590 and 6 252 students, respectively. Anthropometric shape indicators cluding height, sitting height, crus length, and thigh length-and their proportional changes were compared over the 15-year period. The 2024 data were compared with current standard functional dimensions of school furniture. The statistical analysis incorporated t-test and Mann-Whitney U- test.
Results:
From 2010 to 2024, average height increased by 1.8 cm for boys and 1.5 cm for girls; sitting height increased by 1.5 cm for both genders; crus length increased by 0.3 cm for boys and 0.4 cm for girls; and thigh length increased by 0.5 cm for both genders. The ratios of sitting height to height, and sitting height to leg length increased by less than 0.1 . The difference between desk chair height and 1/3 sitting height ranged from 0.4-0.8 cm. Among students matched with size 0 desks and chairs, 22.0% had a desk to chair height difference less than 0, indicating that the desk to chair height difference might be insufficient for taller students. The differences between seat height and fibular height ranged from -1.4 to 1.1 cm; and the differences between seat depth and buttock popliteal length ranged from -9.8 to 3.4 cm. Among obese students, the differences between seat width and 1/2 hip circumference ranged from -20.5 to -8.7 cm, while it ranged from -12.2 to -3.8 cm among non obese students.
Conclusion
Current furniture standards basically satisfy hygienic requirements; however, in the case of exceptionally tall and obese students, ergonomic accommodations such as adaptive seating allocation or personalized adjustments are recommended to meet hygienic requirements.
9.Prevalence and influencing factors of work-related musculoskeletal disorders of coal miners in a coal mine group
Xiaolan ZHENG ; Liuquan JIANG ; Ying ZHAO ; Hongxia ZHAO ; Fan YANG ; Qiang LI ; Li LI ; Yingjun CHEN ; Qingsong CHEN ; Gaisheng LIU
Journal of Environmental and Occupational Medicine 2025;42(3):278-285
Background The positive rate of work-related musculoskeletal disorders (WMSDs) among coal mine workers remains high, which seriously affects the quality of life of the workers. Objective To estimate the prevalence of WMSDs among coal miners in Shanxi Province and analyze their influencing factors. Methods From May to December 2023,
10.Effect modification of amino acid levels in association between polycyclic aromatic hydrocarbon exposure and metabolic syndrome: A nested case-control study among coking workers
Jinyu WU ; Jiajun WEI ; Shugang GUO ; Huixia XIONG ; Yong WANG ; Hongyue KONG ; Liuquan JIANG ; Baolong PAN ; Gaisheng LIU ; Fan YANG ; Jisheng NIE ; Jin YANG
Journal of Environmental and Occupational Medicine 2025;42(3):325-333
Background Exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with the development of metabolic syndrome (MS). However, the role of amino acids in PAH-induced MS remains unclear. Objective To explore the impact of PAHs exposure on the incidence of MS among coking workers, and to determine potential modifying effect of amino acid on this relationship. Methods Unmatched nested case-control design was adopted and the baseline surveys of coking workers were conducted in two plants in Taiyuan in 2017 and 2019, followed by a 4-year follow-up. The cohort comprised 667 coking workers. A total of 362 participants were included in the study, with 84 newly diagnosed cases of MS identified as the case group and 278 as the control group. Urinary levels of 11 PAH metabolites and plasma levels of 17 amino acids were measured by ultrasensitive performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Logistic regression was used to estimate the association between individual PAH metabolites and MS. Stratified by the median concentration of amino acids, Bayesian kernel machine regression (BKMR) model was employed to assess the mixed effects of PAHs on MS. Due to the skewed data distribution, all PAH metabolites and amino acids in the analysis were converted by natural logarithm ln (expressed as lnv). Results The median age of the 362 participants was 37 years, and 83.2% were male. Compared to the control group, the case group exhibited higher concentrations of urinary 2-hydroxyphenanthrene (2-OHPhe), 9-hydroxyphenanthrene (9-OHPhe), and hydroxyphenanthrene (OHPhe) (P=0.005, P=0.049, and P=0.004, respectively), as well as elevated levels of plasma branched chain amino acid (BCAA) and aromatic amino acid (AAA) (P<0.05). After being adjusted for confounding factors, for every unit increase in lnv2-OHPhe in urine, the OR (95%CI) of MS was 1.57 (1.11, 2.26), and for every unit increase in lnvOHPhe, the OR (95%CI) of MS was 1.82 (1.16, 2.90). Tyrosine, leucine, and AAA all presented a significant nonlinear correlation with MS. At low levels, tyrosine, leucine, and AAA did not significantly increase the risk of MS, but at high levels, they increased the risk of MS. In the low amino acid concentration group, as well as in the low BCAA and low AAA concentration groups, it was found that compared to the PAH metabolite levels at the 50th percentile (P50), the log-odds of MS when the PAH metabolite levels was at the 75th percentile (P75) were 0.158 (95%CI: 0.150, 0.166), 0.218 (95%CI: 0.209, 0.227), and 0.262 (95% CI: 0.241, 0.282), respectively, However, no correlation between PAHs and MS was found in the high amino acid concentration group. Conclusion Amino acids modify the effect of PAHs exposure on the incidence of MS. In individuals with low plasma amino acid levels, the risk of developing MS increases with higher concentrations of mixed PAH exposure. This effect is partly due to the low concentrations of BCAA and AAA.


Result Analysis
Print
Save
E-mail