1.Study on the potential allergen and mechanism of pseudo-allergic reactions induced by combined using of Reduning injection and penicillin G injection based on metabolomics and bioinformatics
Yu-long CHEN ; You ZHAI ; Xiao-yan WANG ; Wei-xia LI ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Xiao-fei CHEN ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Kun LI ; Jin-fa TANG ; Ming-liang ZHANG
Acta Pharmaceutica Sinica 2024;59(2):382-394
Based on the strategy of metabolomics combined with bioinformatics, this study analyzed the potential allergens and mechanism of pseudo-allergic reactions (PARs) induced by the combined use of Reduning injection and penicillin G injection. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). Based on UPLC-Q-TOF/MS technology combined with UNIFI software, a total of 21 compounds were identified in Reduning and penicillin G mixed injection. Based on molecular docking technology, 10 potential allergens with strong binding activity to MrgprX2 agonist sites were further screened. Metabolomics analysis using UPLC-Q-TOF/MS technology revealed that 34 differential metabolites such as arachidonic acid, phosphatidylcholine, phosphatidylserine, prostaglandins, and leukotrienes were endogenous differential metabolites of PARs caused by combined use of Reduning injection and penicillin G injection. Through the analysis of the "potential allergen-target-endogenous differential metabolite" interaction network, the chlorogenic acids (such as chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid, and isochlorogenic acid A) and
2.Exploring the risk "time interval window" of sequential medication of Reduning injection and penicillin G injection based on the correlation between biochemical indexes and metabolomics characteristics
Ming-liang ZHANG ; Yu-long CHEN ; Xiao-yan WANG ; Xiao-fei CHEN ; Hui ZHANG ; Ya-li WU ; Liu-qing YANG ; Shu-qi ZHANG ; Lu NIU ; Ke-ran FENG ; Wei-xia LI ; Jin-fa TANG
Acta Pharmaceutica Sinica 2024;59(7):2098-2107
Exploring the risk "time interval window" of sequential medication of Reduning injection (RDN) and penicillin G injection (PG) by detecting the correlation between serum biochemical indexes and plasma metabonomic characteristics, in order to reduce the risk of adverse reactions caused by the combination of RDN and PG. All animal experiments and welfare are in accordance with the requirements of the First Affiliated Experimental Animal Ethics and Animal Welfare Committee of Henan University of Chinese Medicine (approval number: YFYDW2020002). The changes of biochemical indexes in serum of rats were detected by enzyme-linked immunosorbent assay. It was determined that RDN combined with PG could cause pseudo-allergic reactions (PARs) activated by complement pathway. Further investigation was carried out at different time intervals (1.5, 2, 3.5, 4, 6, and 8 h PG+RDN). It was found that sequential administration within 3.5 h could cause significant PARs. However, PARs were significantly reduced after administration interval of more than 4 h. LC-MS was used for plasma metabolomics analysis, and the levels of serum biochemical indicators and plasma metabolic profile characteristics were compared in parallel. 22 differential metabolites showed similar or opposite trends to biochemical indicators before and after 3.5 h. And enriched to 10 PARs-related pathways such as arachidonic acid metabolism, steroid hormone biosynthesis, linoleic acid metabolism, glycerophospholipid metabolism, and tryptophan metabolism. In conclusion, there is a risk "time interval window" phenomenon in the adverse drug reactions caused by the sequential use of RDN and PG, and the interval medication after the "time interval window" can significantly reduce the risk of adverse reactions.
3.Mechanism of Shenkang injection in treatment of renal fibrosis based on bioinformatics and in vitro experimental verification
Gao-Quan MENG ; Ming-Liang ZHANG ; Xiao-Fei CHEN ; Xiao-Yan WANG ; Wei-Xia LI ; Dai ZHANG ; Lu JIANG ; Ming-Ge LI ; Xiao-Shuai ZHANG ; Wei-Ting MENG ; Bing HAN ; Jin-Fa TANG
Chinese Pharmacological Bulletin 2024;40(10):1953-1962
Aim To explore the mechanism and mate-rial basis of Shenkang injection(SKI)in the treatment of renal fibrosis(RF)by bioinformatics and in vitro experiments.Methods The differentially expressed genes of RF were screened by GEO database.With the help of CMAP database,based on the similarity princi-ple of gene expression profile,the drugs that regulated RF were repositioned,and then the components of SKI potential treatment RF were screened by molecular fin-gerprint similarity analysis.At the same time,the core targets and pathways of SKI regulating RF were predic-ted based on network pharmacology.Finally,it was verified by molecular docking and cell experiments.Results Based on the GEO database,two RF-related data sets were screened,and CMAP was relocated to three common RF therapeutic drugs(saracatinib,da-satinib,pp-2).Molecular fingerprint similarity analysis showed that RF therapeutic drugs had high structural similarity with five SKI components such as salvianolic acid B and hydroxysafflor yellow A.Molecular docking results showed that salvianolic acid B,hydroxysafflor yellow A and other components had good binding abili-ty with MMP1 and MMP13,which were the core targets of SKI-regulated potential treatment of RF.Network pharmacology analysis suggested that the core targets of SKI were mainly enriched in signaling pathways such as Relaxin and AGE-RAGE.Cell experiments showed that SKI could significantly reduce the mRNA expres-sion levels of AGER,NFKB1,COL1A1,SERPINE1,VEGFC in AGE-RAGE signaling pathway and MMP1 and MMP13 in Relaxin signaling pathway in RF model cells,and significantly increase the mRNA expression level of RXFP1.Conclusions SKI can play a role in the treatment of RF by regulating Relaxin and AGE-RAGE signaling pathways,and its material basis may be salvianolic acid B,hydroxysafflor yellow A and other components.
4.Effect of DDR1 on high glucose induced endothelial dysfunction by regulating NF-κB/NLRP3 mediated pyroptosis
Wei-Chen ZHAO ; Chun-Yuan HE ; Zong-Biao ZHAO ; Feng-Sen ZHANG ; Yi-Miao XIA ; Fa-Cai WANG ; Ting-Ting LI
Chinese Pharmacological Bulletin 2024;40(12):2325-2332
Aim To investigate the effect of discoidin domain receptor 1(DDR1)on high glucose induced endothelial cell dysfunction and the underlying mecha-nism.Methods Human umbilical vein endothelial cells(HUVECs)were cultured in vitro and divided in-to the control group and high glucose induction group(HG).HUVECs were treated with 33 mmol·L-1 D-glucose for 48 hours to construct endothelial dysfunc-tion.Pyroptosis was detected using propidium iodide staining(PI);lactate dehydrogenase(LDH)and IL-1β,IL-18 levels were determined using enzyme linked immunosorbent assay(ELISA);the expression of DDR1 and NF-κB/NLRP3 signaling pathway proteins and pyroptosis related proteinses were detected using Western blot.Subsequently,the experiment was divid-ed into the control group,HG group,HG+DDR1 NC group,and HG+DDR1 siRNA group.The effect of high glucose on the proliferation and migration of HU-VECs was observed after transfection with DDR1 siR-NA for 24 hours;ELISA was used to detect the endo-thelial nitric oxide synthase(eNOS),vascular cell ad-hesion molecule-1(VCAM-1),intercellular adhesion molecule-1(ICAM-1),as well as LDH,IL-1β,IL-18 levels;PI was employed to detect pyroptosis;Western blot was applied to detect DDR1 and NF-κB/NLRP3 signaling pathway proteins and pyroptosis related pro-teins.Results Compared with the control group,HG group decreased eNOS content,increased VCAM-1 and ICAM-1 contents,decreased cell viability and migration ability,and significantly increased the expressions of DDR1,p-NF-κB,NLRP3 and pyroptosis related pro-teins.The levels of LDH,IL-1β,IL-18 and the rate of pyroptosis significantly increased(P<0.05).Com-pared with HG group,DDR1 siRNA could promote the secretion of eNOS,decrease the levels of VCAM-1,ICAM-1,LDH,IL-1β and IL-1 8,increase cell viability and migration ability,reduce the expression of p-NF-κB,NLRP3 and pyroptosis related proteins,and inhibit high glucose-induced pyroptosis of HUVECs(P<0.05).Conclusions Gene silencing DDR1 can im-prove vascular endothelial cell dysfunction induced by high glucose,and the mechanism is related to the inhi-bition of NF-κB/NLRP3 signaling pathway mediated pyroptosis.
5.Coronary artery perforation after using shockwave balloon during percutaneous coronary intervention treatment:a case report
Chen-Ji XU ; Fei LI ; Fa ZHENG ; Bin ZHANG ; Feng-Xia QU ; Jian-Meng WANG ; Ya-Qun ZHOU ; Xian-Liang LI ; Song-Tao WANG ; Yan SHAO ; Chang-Hong LU
Chinese Journal of Interventional Cardiology 2024;32(7):405-408
Coronary perforation is when a contrast agent or blood flows outside a blood vessel through a tear in a coronary artery.In this case,we reported a case of percutaneous coronary intervention for coronary calcified lesions,which led to iatrogenic coronary perforation and cardiac tamponade after the use of Shockwave balloon to treat intracoronary calcified nodules,and the management of PCI-related CAP was systematically reviewed through the literature.
6.Study on the objectivity and biological mechanism of Psoralea corylifolia Linn.'s 'Great dryness damages the liver'
Ming-liang ZHANG ; Xu ZHAO ; Wei-xia LI ; Xiao-yan WANG ; Yu-long CHEN ; De-xin KONG ; Cheng-zhao WU ; Xiao-fei CHEN ; Zhao-fang BAI ; Ming NIU ; Jia-bo WANG ; Yan-ling ZHAO ; Xiao-he XIAO ; Jin-fa TANG
Acta Pharmaceutica Sinica 2023;58(4):1014-1023
According to the theory of 'Xingben Dazao'
7.Evaluation of Microsphere-based xMAP Test for gyrA Mutation Identification in Mycobacterium Tuberculosis.
Xi Chao OU ; Bing ZHAO ; Ze Xuan SONG ; Shao Jun PEI ; Sheng Fen WANG ; Wen Cong HE ; Chun Fa LIU ; Dong Xin LIU ; Rui Da XING ; Hui XIA ; Yan Lin ZHAO
Biomedical and Environmental Sciences 2023;36(4):384-387
8.Potential components and mechanism of Liangxue Tuezi Mixture in treating Henoch-Schönlein purpura based on network pharmacology and metabolomics.
Wei-Xia LI ; Shuang XU ; Yu-Long CHEN ; Xiao-Yan WANG ; Hui ZHANG ; Ming-Liang ZHANG ; Wen-Juan NI ; Xian-Qing REN ; Jin-Fa TANG
China Journal of Chinese Materia Medica 2023;48(12):3327-3344
Ultra-performance liquid chromatography-quadrupole time of fight/mass spectrometry(UPLC-Q-TOF-MS) and UNIFI were employed to rapidly determine the content of the components in Liangxue Tuizi Mixture. The targets of the active components and Henoch-Schönlein purpura(HSP) were obtained from SwissTargetPrediction, Online Mendelian Inheritance in Man(OMIM), and GeneCards. A "component-target-disease" network and a protein-protein interaction(PPI) network were constructed. Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed for the targets by Omishare. The interactions between the potential active components and the core targets were verified by molecular docking. Furthermore, rats were randomly assigned into a normal group, a model group, and low-, medium-, and high-dose Liangxue Tuizi Mixture groups. Non-targeted metabolomics was employed to screen the differential metabolites in the serum, analyze possible metabolic pathways, and construct the "component-target-differential metabolite" network. A total of 45 components of Liangxue Tuizi Mixture were identified, and 145 potential targets for the treatment of HSP were predicted. The main signaling pathways enriched included resistance to epidermal growth factor receptor tyrosine kinase inhibitors, phosphatidylinositol 3-kinase/protein kinase B(PI3K-AKT), and T cell receptor. The results of molecular docking showed that the active components in Liangxue Tuizi Mixture had strong binding ability with the key target proteins. A total of 13 differential metabolites in the serum were screened out, which shared 27 common targets with active components. The progression of HSP was related to metabolic abnormalities of glycerophospholipid and sphingolipid. The results indicate that the components in Liangxue Tuizi Mixture mainly treats HSP by regulating inflammation and immunity, providing a scientific basis for rational drug use in clinical practice.
Animals
;
Rats
;
IgA Vasculitis/drug therapy*
;
Network Pharmacology
;
Molecular Docking Simulation
;
Phosphatidylinositol 3-Kinases
;
Metabolomics
9.Comparison of distribution of eight components from Liangxue Tuizi Mixture between normal and Henoch-Schonlein purpura rats.
Li-Ling SI ; Lu NIU ; Xiao-Yan WANG ; Hui ZHANG ; Ming-Liang ZHANG ; Shuang XU ; Xian-Qing REN ; Jin-Fa TANG ; Wei-Xia LI
China Journal of Chinese Materia Medica 2023;48(21):5915-5931
This study used UPLC-TQ-MS technology to replicate a Henoch-Schonlein purpura(HSP) model in rats by administering warm drugs by gavage and injecting ovalbumin with Freund's complete adjuvant emulsion. The distribution differences and characteristics of eight major components(ferulic acid, caffeic acid, neochlorogenic acid, cryptochlorogenic acid, benzoyl oxypaeoniflorin, tracheloside, loganin, and paeoniflorin) in rat liver, lung, heart, spleen, and kidney tissues were determined after oral administration of the Liangxue Tuizi Mixture at a dose of 42 g·kg~(-1) in both normal physiological and HSP states at 0.5, 1, 2, 6, and 12 hours. The results showed that the distribution patterns of the eight components of Liangxue Tuizi Mixture in the tissues of normal and HSP model rats were different. The main component, paeoniflorin, in Moutan Cortex and Paeoniae Radix Alba had higher content in all tissues. The eight components were predominantly distributed in the liver, lung, and kidney tissues, followed by spleen and heart tissues.
Rats
;
Animals
;
IgA Vasculitis/drug therapy*
;
Monoterpenes
;
Administration, Oral
;
Liquid Chromatography-Mass Spectrometry
10.Effect of Down-Regulation of ANRIL on Proliferation and Apoptosis of Kasumi-1 Cells and Its Potential Mechanism.
Cheng-Si ZHANG ; Jian-Xia XU ; Fa-Hua DENG ; Hua-Li HU ; Si-Qi WANG ; Hai HUANG ; Si-Xi WEI
Journal of Experimental Hematology 2022;30(4):984-989
OBJECTIVE:
To investigate the down-regulation of ANRIL (Antisense non-coding RNA in the INK4 Locus) effects on proliferation and apoptosis of Kasumi-1 cells and its related molecular mechanism.
METHODS:
Recombinant lentivirus was used to construct ANRIL down-regulation Kasumi-1 cells (sh-ANRIL group) and its control cells (sh-NC group). A fluorescence microscope was used to observe the transfection efficiency, RT-qPCR was used to detect knockdown efficiency and ANRIL expression in PBMCs and MBMCs of patients with acute myeloid leukemia (AML). Proliferation and apoptosis of Kasumi-1 cells were assayed by CCK-8 method and flow cytometry. Western blot was employed to detect the expression of PI3K, AKT, p-AKT, and relevant protein after down-regulation of ANRIL in Kasumi-1 cells.
RESULTS:
ANRIL overexpressed significantly in PBMCs and MBMCs of patients with AML, the transfection efficiency of recombinant lentivirus carrying sh-ANRIL and sh-NC on Kasumi-1 cells exceeded 90%, and the knockdown efficiency was 70%. When DNR was administrated for 24, 48, and 72 hours, the cell inhibition rate of the sh-ANRIL group was (47.40±1.49)%, (69.11±0.51)% and (91.82±1.10)%, which were significantly higher than those of the sh-NC group, respectively (P<0.05). The apoptotic rate in the sh-ANRIL group was (10.29±0.58)%, which was significantly higher than (5.42±0.67)% of the sh-NC group (P<0.01). After DNR treatment for 24 hours, the apoptotic rate of the sh-ANRIL group was (54.41±1.69)%, which was significantly higher than (38.28±1.42)% of sh-NC group (P<0.001). Western blot revealed that the protein levels of PI3K, p-AKT, PCNA, and BCL-2 in the sh-ANRIL group were reduced significantly than those in the sh-NC group, while the BAX protein expression increased.
CONCLUSION
ANRIL may affect the proliferation and apoptosis of Kasumi-1 cells through PI3K/AKT signaling pathway. ANRIL is a potential therapeutic target for AML.
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Down-Regulation
;
Humans
;
Leukemia, Myeloid, Acute/genetics*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/genetics*
;
RNA, Long Noncoding/genetics*

Result Analysis
Print
Save
E-mail