1.Extracellular vesicles: Roles in oocytes and emerging therapeutic opportunities.
Zhongyu ZHAO ; Yinrui SUN ; Renhao GUO ; Junzhi LIANG ; Wanlin DAI ; Yutao JIANG ; Yafan YU ; Yuexin YU ; Lixia HE ; Da LI
Chinese Medical Journal 2025;138(9):1050-1060
The production of high-quality oocytes requires precisely orchestrated intercellular communication. Extracellular vesicles (EVs) are cell-derived nanoparticles that play a vital role in the transfer of bioactive molecules, which has gained much attention in the field of diagnosis and treatment. Over the past ten years, the participation of EVs in the reproductive processes of oocytes has been broadly studied and has shown great potential for elucidating the intricacies of female reproductive health. This review provides an extensive discussion of the influence of EVs on oocytes, emphasizing their involvement in normal physiology and altered cargo under pathological conditions. In addition, the positive impact of therapeutic EVs on oocyte quality and their role in alleviating ovarian pathological conditions are summarized.
Humans
;
Extracellular Vesicles/physiology*
;
Oocytes/cytology*
;
Female
;
Animals
;
Cell Communication/physiology*
2.Research progress on the role of extracellular vesicles in the repair of skeletal muscle membrane injury.
Acta Physiologica Sinica 2025;77(5):956-968
The timely and efficient repair of the plasma membrane in skeletal muscle cells following injury is critical for maintaining cellular function and tissue integrity. Extracellular vesicles (EVs) play a pivotal role in this process through multi-level mechanisms. This review systematically summarizes the generation, secretion, and multifunctional roles of EVs in the repair of skeletal muscle plasma membrane damage: (1) removing damaged membrane fragments and cellular debris via endocytosis and exocytosis to maintain plasma membrane stability; (2) fusing with the injured plasma membrane to supply essential components for membrane repair and restore membrane integrity; and (3) serving as a vital mediator of intercellular communication, transmitting repair signals, promoting intercellular interactions, and orchestrating multi-level responses to facilitate tissue regeneration and functional recovery. Additionally, this article explores the potential applications of EVs in the treatment of exercise-induced injuries and muscular diseases, aiming to provide theoretical insights and novel strategies for future research and EV-based therapeutic approaches.
Extracellular Vesicles/physiology*
;
Humans
;
Muscle, Skeletal/physiology*
;
Cell Membrane/physiology*
;
Animals
;
Regeneration/physiology*
;
Exocytosis/physiology*
;
Endocytosis/physiology*
;
Cell Communication/physiology*
3.Mechanism of extracellular vesicles in the repair of intervertebral disc degeneration.
Journal of Biomedical Engineering 2025;42(2):409-416
Extracellular vesicles (EVs), defined as cell-secreted nanoscale vesicles that carry bioactive molecules, have emerged as a promising therapeutic strategy in tumor and tissue regeneration. Their potential in repairing intervertebral disc degeneration (IDD) through multidimensional regulatory mechanisms is a rapidly advancing field of research. This paper provided an overview of the mechanisms of EVs in IDD repair, thoroughly reviewed recent literature on EVs for IDD, domestically and internationally, and summarized their therapeutic mechanisms. In IDD repair, EVs could act through different mechanisms at the molecular, cellular, and tissue levels. At the molecular level, EVs could treat IDD by inhibiting inflammatory reactions, suppressing oxidative stress, and regulating the synthesis and decomposition of extracellular matrix. At the cellular level, EVs could treat IDD by inhibiting cellular pyroptosis, ferroptosis, and apoptosis and promoting cell proliferation and differentiation. At the tissue level, EVs could treat IDD by inhibiting neovascularization. EVs have a strong potential for clinical application in the treatment of IDD and deserve more profound study.
Extracellular Vesicles/physiology*
;
Humans
;
Intervertebral Disc Degeneration/therapy*
;
Apoptosis
;
Cell Proliferation
;
Oxidative Stress
;
Cell Differentiation
;
Extracellular Matrix/metabolism*
;
Animals
;
Pyroptosis
4.The Maintenance Effects of Extracellular Vesicles Derived from Placental Tissue and Mesenchymal Stem Cells on Hematopoietic Stem and Progenitor Cells.
Ying-Jie LIU ; Chen WANG ; Tao CHENG ; Hui CHENG
Journal of Experimental Hematology 2025;33(5):1499-1506
OBJECTIVE:
To investigate the role of extracellular vesicles (EVs) derived from placental tissue and placental mesenchymal stem cells in supporting the growth and function of adult hematopoietic stem and progenitor cells (HSPCs), so as to optimize their culture system.
METHODS:
EVs were isolated from mouse placental tissue (PL-EV) and placental mesenchymal stem cells (PL-MSC-EV). These EVs were co-cultured with 3 000 adult bone marrow LKS+ (lineage- c-Kit+ Sca-1+ ) cells for 72 hours at concentrations of 0, 1, 10, 50, 100, and 200 μg/ml. The proportion and absolute count of LKS+ cells after co-culture were analyzed by flow cytometry, while their self-renewal and multi-lineage differentiation potential were evaluated using colony-forming unit (CFU) assays.
RESULTS:
Compared to the blank control group, the proportion of LKS+ cells were significantly increased in PL-EV groups at concentrations ≥10 μg/ml after 72 hours of co-culture. Notably, LKS+ cells co-cultured at the concentration of 10 μg/ml exhibited the highest absolute count (899±171) and the highest proportion of LT-HSCs (LKS+ CD135- CD34-) (0.67%±0.07%). In the PL-MSC-EV co-culture system, the absolute count of LKS+ cells peaked at the concentration of 1 μg/ml (1011±99 cells), though the proportion of LT-HSCs was relatively low (0.15%±0.05%). The comparison between these two culture systems revealed that PL-EV at 10 μg/ml and PL-MSC-EV at 1 μg/ml displayed the most pronounced effects on LKS+ cell proliferation, but with no significant difference between them. CFU assays showed that, in the PL-EV culture system, the number of LKS+ colony formed in 1 and 10 μg/ml groups was not significantly different compared with the blank control group. In contrast, in the PL-MSC-EV system, the highest LKS+ colony-forming capacity was observed when co-cultured with 1 μg/ml PL-MSC-EV, while a significant reduction was noted at concentrations above 10 μg/ml.
CONCLUSION
PL-EV and PL-MSC-EV effectively support the growth and function of HSPCs. And PL-MSC-EV exhibits a superior efficacy in preserving the stemness of LKS+ cells, thus suggesting its potential for optimizing culture systems of HSPCs.
Mesenchymal Stem Cells/cytology*
;
Extracellular Vesicles
;
Placenta/cytology*
;
Female
;
Animals
;
Mice
;
Pregnancy
;
Hematopoietic Stem Cells/cytology*
;
Coculture Techniques
;
Cell Differentiation
;
Cell Proliferation
;
Cells, Cultured
5.Therapeutic potential of extracellular vesicles in neurological diseases.
Qingfeng DU ; Chao YANG ; Xueqing XIA ; Ting WANG
Journal of Southern Medical University 2025;45(9):2046-2054
Extracellular vesicles (EVs), nanoscale lipid bilayer vesicles actively secreted by organisms into the extracellular environment, are rich in specific bioactive substances, such as proteins, genetic materials and lipids. These vesicles are involved in intercellular interactions and can pass through the blood-brain barrier, and may thus potentially serve as important biological substances for treatment of neurological diseases. In this review, we summarize the biological origin of EVs and their therapeutic potential in neurological diseases, expound the possibility of EV-based treatment of neurological diseases using traditional Chinese medicine, and discuss the challenges and prospects of researches of EVs for the treating neurological diseases.
Extracellular Vesicles
;
Humans
;
Nervous System Diseases/therapy*
;
Medicine, Chinese Traditional
6.Engineered Extracellular Vesicles Loaded with MiR-100-5p Antagonist Selectively Target the Lesioned Region to Promote Recovery from Brain Damage.
Yahong CHENG ; Chengcheng GAI ; Yijing ZHAO ; Tingting LI ; Yan SONG ; Qian LUO ; Danqing XIN ; Zige JIANG ; Wenqiang CHEN ; Dexiang LIU ; Zhen WANG
Neuroscience Bulletin 2025;41(6):1021-1040
Hypoxic-ischemic (HI) brain damage poses a high risk of death or lifelong disability, yet effective treatments remain elusive. Here, we demonstrated that miR-100-5p levels in the lesioned cortex increased after HI insult in neonatal mice. Knockdown of miR-100-5p expression in the brain attenuated brain injury and promoted functional recovery, through inhibiting the cleaved-caspase-3 level, microglia activation, and the release of proinflammation cytokines following HI injury. Engineered extracellular vesicles (EVs) containing neuron-targeting rabies virus glycoprotein (RVG) and miR-100-5p antagonists (RVG-EVs-Antagomir) selectively targeted brain lesions and reduced miR-100-5p levels after intranasal delivery. Both pre- and post-HI administration showed therapeutic benefits. Mechanistically, we identified protein phosphatase 3 catalytic subunit alpha (Ppp3ca) as a novel candidate target gene of miR-100-5p, inhibiting c-Fos expression and neuronal apoptosis following HI insult. In conclusion, our non-invasive method using engineered EVs to deliver miR-100-5p antagomirs to the brain significantly improves functional recovery after HI injury by targeting Ppp3ca to suppress neuronal apoptosis.
Animals
;
MicroRNAs/metabolism*
;
Extracellular Vesicles/metabolism*
;
Mice
;
Recovery of Function/physiology*
;
Hypoxia-Ischemia, Brain/therapy*
;
Mice, Inbred C57BL
;
Antagomirs/administration & dosage*
;
Male
;
Animals, Newborn
;
Apoptosis/drug effects*
;
Brain Injuries/metabolism*
;
Glycoproteins
;
Peptide Fragments
;
Viral Proteins
7.Emerging roles of extracellular vesicles in oral and maxillofacial areas.
Qianting WANG ; Jiayu SUN ; Haci JIANG ; Mengfei YU
International Journal of Oral Science 2025;17(1):11-11
The oral and maxillofacial region is a highly complex area composed of multiple tissue types and bears various critical functions of the human body. Diseases in this region pose significant diagnostic and management challenges; therefore, exploring new strategies for early diagnosis, targeted treatment, and tissue reconstruction is key to improving patient prognosis and quality of life. Extracellular vesicles are a group of heterogeneous lipid-bilayer membrane structures secreted by most cell types, including exosomes, microvesicles, and apoptotic bodies. Present in various body fluids and tissues, they act as messengers via the transfer of nucleic acids, proteins, and metabolites to recipient cells. To date, studies have revealed the different roles of extracellular vesicles in physiological or pathological processes, as well as applications in disease diagnosis, prognosis, and treatment. The importance and tissue specificity of the dental and maxillofacial tissues indicate that extracellular vesicles derived from this region are promising for further research. This paper reviews the published data on extracellular vesicles derived from cells, body fluids, and tissues in oral and maxillofacial regions, summarizes the latest advances in extracellular vesicles from extensive sources, and concludes with a focus on the current research progress and application prospects of engineered exosomes in oral science.
Humans
;
Extracellular Vesicles/physiology*
;
Mouth
;
Exosomes/physiology*
8.Mandible-derived extracellular vesicles regulate early tooth development in miniature swine via targeting KDM2B.
Ye LI ; Meng SUN ; Yi DING ; Ang LI
International Journal of Oral Science 2025;17(1):36-36
Tissue interactions play a crucial role in tooth development. Notably, extracellular vesicle-mediated interactions between the mandible and tooth germ are considered essential. Here, we revealed that mandible extracellular vesicles could modulate the proliferation and differentiation of dental mesenchymal cells by regulating the histone demethylase KDM2B. Further investigation showed that mandible derived extracellular vesicles could deliver miR-206 to KDM2B, thereby regulating tooth development. An animal study demonstrated that the miR-206/KDM2B pathway affected tooth morphogenesis and mineralization after eight weeks of subcutaneous transplantation in nude mice. In conclusion, this study suggested that the mandible played a critical role in tooth morphogenesis and mineralization, which could be a potential therapeutic target for abnormal tooth development and an alternative model for tooth regeneration.
Animals
;
Extracellular Vesicles/metabolism*
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
;
Swine
;
MicroRNAs/metabolism*
;
Mandible
;
Mice, Nude
;
Odontogenesis/physiology*
;
Swine, Miniature
;
Mice
;
Cell Differentiation
;
Cell Proliferation
9.Emerging roles of exosomes in oral diseases progression.
Jiayi WANG ; Junjun JING ; Chenchen ZHOU ; Yi FAN
International Journal of Oral Science 2024;16(1):4-4
Oral diseases, such as periodontitis, salivary gland diseases, and oral cancers, significantly challenge health conditions due to their detrimental effects on patient's digestive functions, pronunciation, and esthetic demands. Delayed diagnosis and non-targeted treatment profoundly influence patients' prognosis and quality of life. The exploration of innovative approaches for early detection and precise treatment represents a promising frontier in oral medicine. Exosomes, which are characterized as nanometer-sized extracellular vesicles, are secreted by virtually all types of cells. As the research continues, the complex roles of these intracellular-derived extracellular vesicles in biological processes have gradually unfolded. Exosomes have attracted attention as valuable diagnostic and therapeutic tools for their ability to transfer abundant biological cargos and their intricate involvement in multiple cellular functions. In this review, we provide an overview of the recent applications of exosomes within the field of oral diseases, focusing on inflammation-related bone diseases and oral squamous cell carcinomas. We characterize the exosome alterations and demonstrate their potential applications as biomarkers for early diagnosis, highlighting their roles as indicators in multiple oral diseases. We also summarize the promising applications of exosomes in targeted therapy and proposed future directions for the use of exosomes in clinical treatment.
Humans
;
Exosomes
;
Quality of Life
;
Extracellular Vesicles
;
Biomarkers
;
Cell Communication
;
Mouth Neoplasms
10.Advances in the Regulation of Follicular Development by Extracellular Vesicles and Non-Coding RNAs.
Acta Academiae Medicinae Sinicae 2023;45(5):821-826
Extracellular vesicles (EV),nanoscale vesicles encapsulated by phospholipid bilayers,are rich in biological molecules such as nucleic acids,metabolites,proteins,and lipids derived from parental cells.They are mainly involved in intercellular communication,signal transmission,and material transport and affect the functions of target cells.Ovulation disorders account for a higher proportion in the factors causing infertility which demonstrates increasing incidence year by year.Non-coding RNAs participate in a series of physiological and pathological processes of follicular development,playing a key role in female infertility.This review systematically introduces the types and biological roles of EV and elaborates on the regulation of follicular development from the effects of EV and non-coding RNAs on granulosa cell function,oocyte maturation,ovulation,luteal formation,and steroid hormone synthesis,providing a new idea and a breakthrough point for the diagnosis and treatment of infertility.
Female
;
Humans
;
Oogenesis/physiology*
;
Granulosa Cells
;
Extracellular Vesicles/physiology*
;
Cell Communication
;
RNA, Untranslated
;
Infertility

Result Analysis
Print
Save
E-mail