1.Matrix stiffening related lncRNA SNHG8 regulates chemosensitivity of ovarian cancer.
Zina CHENG ; Xiaolu MA ; Quanyou ZHANG ; Weiyi CHEN
Journal of Biomedical Engineering 2023;40(1):87-94
Extracellular matrix (ECM) has been implicated in tumor progress and chemosensitivity. Ovarian cancer brings a great threat to the health of women with a significant feature of high mortality and poor prognosis. However, the potential significance of matrix stiffness in the pattern of long non-coding RNAs (lncRNAs) expression and ovarian cancer drug sensitivity is still largely unkown. Here, based on RNA-seq data of ovarian cancer cell cultured on substrates with different stiffness, we found that a great amount of lncRNAs were upregulated in stiff group, whereas SNHG8 was significantly downregulated, which was further verified in ovarian cancer cells cultured on polydimethylsiloxane (PDMS) hydrogel. Knockdown of SNHG8 led to an impaired efficiency of homologous repair, and decreased cellular sensitivity to both etoposide and cisplatin. Meanwhile, the results of the GEPIA analysis indicated that the expression of SNHG8 was significantly decreased in ovarian cancer tissues, which was negatively correlated with the overall survival of patients with ovarian cancer. In conclusion, matrix stiffening related lncRNA SNHG8 is closely related to chemosensitivity and prognosis of ovarian cancer, which might be a novel molecular marker for chemotherapy drug instruction and prognosis prediction.
Female
;
Humans
;
Cisplatin/pharmacology*
;
Elasticity/physiology*
;
Etoposide
;
Extracellular Matrix/physiology*
;
Ovarian Neoplasms/metabolism*
;
RNA, Long Noncoding/metabolism*
2.Research advances of adipose stem cell matrix gel in promoting wound healing.
Nan XING ; Ran HUO ; Hai Tao WANG ; Jin Cun YANG ; Jiong CHEN ; Lei PENG ; Xiao Wen LIU
Chinese Journal of Burns 2023;39(1):81-84
In recent years, with the problem of aging population in China being prominant, the number of patients with chronic wounds such as diabetic foot, pressure ulcer, and vascular ulcer is increasing. Those diseases seriously affect the life quality of patients and increase the economy and care burden of the patients' family, which have been one of the most urgent clinical problems. Many researches have confirmed that adipose stem cells can effectively promote wound healing, while exogenous protease is needed, and there are ethical and many other problems, which limit the clinical application of adipose stem cells. Adipose stem cell matrix gel is a gel-like mixture of biologically active extracellular matrix and stromal vascular fragment obtained from adipose tissue by the principle of fluid whirlpool and flocculation precipitation. It contains rich adipose stem cells, hematopoietic stem cells, endothelial progenitor cells, and macrophages, etc. The preparation method of adipose stem cell matrix gel is simple and the preparation time is short, which is convenient for clinical application. Many studies at home and abroad showed that adipose stem cell matrix gel can effectively promote wound healing by regulating inflammatory reaction, promoting microvascular reconstruction and collagen synthesis. Therefore, this paper summarized the preparation of adipose stem cell matrix gel, the mechanism and problems of the matrix gel in promoting wound repair, in order to provide new methods and ideas for the treatment of chronic refractory wounds in clinic.
Humans
;
Aged
;
Wound Healing/physiology*
;
Adipocytes
;
Adipose Tissue
;
Extracellular Matrix
;
Stem Cells
3.Research advances on the role of acid fibroblast growth factor in promotion of wound healing.
Hong Tao WANG ; Jun Tao HAN ; Da Hai HU
Chinese Journal of Burns 2022;38(9):859-863
Acid fibroblast growth factor (aFGF) is a member of fibroblast growth factors (FGF) family, widely promoting embryonic development, wound healing, vascular regeneration, nerve injury repair, as well as regulating immune metabolism. Many pathophysiological processes, such as inflammation, neovascularization, proliferation and migration of repair cells, and deposition of collagen and other extracellular matrix are involved in the process of wound healing. Based on the relevant literature in recent years, this article mainly reviews the research progresses on the roles and mechanism of aFGF in biological signal transduction, regulation of cell growth, and involvement in tissue repair, and discusses the current research hot spots as well as the prospective future direction of clinical applications of aFGF in the aspect of clinical pharmacokinetics and safety.
Collagen
;
Extracellular Matrix
;
Fibroblast Growth Factor 1
;
Humans
;
Neovascularization, Pathologic
;
Wound Healing/physiology*
4.Effect of Notch1 on extracellular matrix deposition in the renal tubulointerstitium of diabetes.
Xing-Mei LIU ; Yan SHEN ; Yu HE ; Xiao-Xia BAN ; Hong-Jun JIN ; Xiao-Lan HE ; He TIAN
Acta Physiologica Sinica 2022;74(3):392-400
The aim of the present study was to observe the effects of Notch1 and autophagy on extracellular matrix deposition in renal tubulointerstitium of diabetes and to explore the mechanism. The mice were randomly divided into normal control group (db/m mice) and diabetes group (db/db mice). After 12 weeks of feeding, the mice were sacrificed and the corresponding biochemical indexes were measured. Rat renal tubular epithelial cells NRK52E were cultured under normal glucose (NG) and high glucose (HG) respectively, and the expression of Notch1 and LC3 proteins were detected by Western blotting. Autophagosomes in NRK52E cells with overexpressed and knockdown Notch1 under NG and HG conditions were observed by confocal microscope, and the expression changes of Notch1, Collagen-I and III protein were detected by immunofluorescence. The results showed that the Notch1 and Collagen-III expressions were increased (P < 0.01) and the LC3 expression was decreased (P < 0.05) in db/db mice compared with db/m mice. In vitro, the Notch1 was increased (P < 0.01) and the LC3 expression was decreased significantly (P < 0.01) in NRK52E cells of HG group compared with NG group. There was no significant change of Notch1 and LC3 expression between the mannitol (MA) group and the NG group. Autophagy was decreased and extracellular matrix deposition was aggravated when Notch1 was overexpressed. In contrast, autophagy was increased and extracellular matrix deposition was relieved by knockdown of Notch1 under HG conditions. In conclusion, Notch1 protein expression was increased and autophagy was reduced in renal tissue of diabetes and renal tubular epithelial cells under HG. The extracellular matrix deposition in the renal tubulointerstitium was relieved by regulating autophagy after the knockdown of Notch1.
Animals
;
Autophagy/physiology*
;
Diabetes Mellitus
;
Extracellular Matrix
;
Glucose/pharmacology*
;
Kidney
;
Mice
;
Rats
;
Receptor, Notch1/genetics*
5.Epithelial defect repair in the auricle and auditory meatus by grafting with cultured adipose-derived mesenchymal stem cell aggregate-extracellular matrix.
Wen-Jin ZHANG ; Lei-Guo MING ; Jian-Jun SUN
Chinese Medical Journal 2019;132(6):680-689
BACKGROUND:
Several patients experience persistent otorrhea after a flawless surgical procedure because of insufficient epithelial healing. Several efforts, such as autologous tissue allograft and xenograft, have been made to halt otorrhea. However, a stable technology to induce temporal epithelial repair is yet to be established. Therefore, this study aims to investigate whether implantation of seeding adipose-derived mesenchymal stem cell (ADMSC) aggregates on extracellular matrix (ECM; herein, ADMSC aggregate-ECM) into damaged skin wound promotes skin regeneration.
METHODS:
ADMSC aggregate-ECM was prepared using a previously described procedure that isolated ADMSCs from rabbits and applied to the auricle and auditory meatus wound beds of New Zealand white rabbits. Wound healing was assessed by general observation and hematoxylin and eosin (H&E) staining. Secretion of growth factor of the tissue was evaluated by western blotting. Two other groups, namely, ECM and control, were used. Comparisons of three groups were conducted by one-way analysis of variance analysis.
RESULTS:
ADMSCs adhered tightly to the ECM and quickly formed cell sheets. At 2 weeks, general observation and H&E staining indicated that the wound healing rates in the ADMSC aggregate-ECM (69.02 ± 6.36%) and ECM (59.32 ± 4.10%) groups were higher than that in the control group (43.74 ± 12.15%; P = 0.005, P < 0.001, respectively) in ear auricle excisional wounds. At 7 weeks, The scar elevation index was evidently reduced in the ADMSC aggregate-ECM (2.08 ± 0.87) and ECM (2.31 ± 0.33) groups compared with the control group (4.06 ± 0.45; P < 0.001, P < 0.001, respectively). In addition, the scar elevation index of the ADMSC aggregate-ECM group reached the lowest rate 4 weeks in advance. In auditory meatus excisional wounds, the ADMSC aggregate-ECM group had the largest range of normal skin-like structure at 4 weeks. The ADMSC aggregate-ECM and ECM groups secreted increased amounts of growth factors that contributed to skin regeneration at weeks 1 and 2, respectively.
CONCLUSIONS
ADMSC aggregate-ECM and ECM are effective repair materials for wound healing, especially ADMSC aggregate-ECM. This approach will provide a meaningful experimental basis for mastoid epithelium repair in subsequent clinical trials.
Adipose Tissue
;
cytology
;
Animals
;
Cell Differentiation
;
physiology
;
Cell Proliferation
;
physiology
;
Cells, Cultured
;
Ear Auricle
;
cytology
;
Extracellular Matrix
;
chemistry
;
Flow Cytometry
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Mesenchymal Stem Cells
;
cytology
;
Microscopy, Electron, Scanning
;
Osteogenesis
;
physiology
;
Rabbits
;
Real-Time Polymerase Chain Reaction
6.Recent advances in nephronectin.
Guo-Qing QIAN ; Nai-Bin YANG ; Jie-Jun SHI
Acta Physiologica Sinica 2019;71(5):799-805
Nephronectin (NPNT) is a novel extracellular matrix protein and a new ligand of integrin α8β1. Recent studies showed that NPNT is highly expressed in kidney, lung, thyroid, etc, and it may play an important role in many pathological conditions. NPNT is involved in the process of kidney development and acute kidney injury, regulates proliferation and differentiation of osteoblast, and induces the vasculogenesis in vitro. NPNT may play a key role in pathological osteoporosis and therefore be a new therapeutic target of bone diseases. NPNT gene variants are not only associated with lung function, but also potentially implicated in chronic airway diseases development. Moreover, NPNT is also an important factor that mediates pathology of cardiac, epidermis, breast, liver and teeth diseases. In this paper, we reviewed some research progresses on the structure, distribution, physiological and pathophysiological functions of NPNT.
Cell Differentiation
;
Cell Proliferation
;
Extracellular Matrix Proteins
;
physiology
;
Humans
;
Kidney
;
physiology
;
Osteoblasts
;
cytology
;
Osteoporosis
7.Effects of Adipose-derived Mesenchymal Stem Cell Exosomes on Corneal Stromal Fibroblast Viability and Extracellular Matrix Synthesis.
Ting SHEN ; ; Qing-Qing ZHENG ; Jiang SHEN ; Qiu-Shi LI ; Xing-Hui SONG ; Hong-Bo LUO ; Chao-Yang HONG ; ; Ke YAO
Chinese Medical Journal 2018;131(6):704-712
BackgroundCorneal stromal cells (CSCs) are components of the corneal endothelial microenvironment that can be induced to form a functional tissue-engineered corneal endothelium. Adipose-derived mesenchymal stem cells (ADSCs) have been reported as an important component of regenerative medicine and cell therapy for corneal stromal damage. We have demonstrated that the treatment with ADSCs leads to phenotypic changes in CSCs in vitro. However, the underlying mechanisms of such ADSC-induced changes in CSCs remain unclear.
MethodsADSCs and CSCs were isolated from New Zealand white rabbits and cultured in vitro. An Exosome Isolation Kit, Western blotting, and nanoparticle tracking analysis (NTA) were used to isolate and confirm the exosomes from ADSC culture medium. Meanwhile, the optimal exosome concentration and treatment time were selected. Cell Counting Kit-8 and annexin V-fluorescein isothiocyanate/propidium iodide assays were used to assess the effect of ADSC- derived exosomes on the proliferation and apoptosis of CSCs. To evaluate the effects of ADSC- derived exosomes on CSC invasion activity, Western blotting was used to detect the expression of matrix metalloproteinases (MMPs) and collagens.
Results:ADSCs and CSCs were successfully isolated from New Zealand rabbits. The optimal concentration and treatment time of exosomes for the following study were 100 μg/ml and 96 h, respectively. NTA revealed that the ADSC-derived exosomes appeared as nanoparticles (40-200 nm), and Western blotting confirmed positive expression of CD9, CD81, flotillin-1, and HSP70 versus ADSC cytoplasmic proteins (all P < 0.01). ADSC-derived exosomes (50 μg/ml and 100 μg/ml) significantly promoted proliferation and inhibited apoptosis (mainly early apoptosis) of CSCs versus non-exosome-treated CSCs (all P < 0.05). Interestingly, MMPs were downregulated and extracellular matrix (ECM)-related proteins including collagens and fibronectin were upregulated in the exosome-treated CSCs versus non-exosome-treated CSCs (MMP1: t = 80.103, P < 0.01; MMP2: t = 114.778, P < 0.01; MMP3: t = 56.208, P < 0.01; and MMP9: t = 60.617, P < 0.01; collagen I: t = -82.742, P < 0.01; collagen II: t = -72.818, P < 0.01; collagen III: t = -104.452, P < 0.01; collagen IV: t = -133.426, P < 0.01, and collagen V: t = -294.019, P < 0.01; and fibronectin: t = -92.491, P < 0.01, respectively).
Conclusion:The findings indicate that ADSCs might play an important role in CSC viability regulation and ECM remodeling, partially through the secretion of exosomes.
Adipose Tissue ; cytology ; Animals ; Cell Proliferation ; physiology ; Cell Survival ; physiology ; Cells, Cultured ; Exosomes ; metabolism ; Extracellular Matrix ; metabolism ; Fibroblasts ; cytology ; metabolism ; Matrix Metalloproteinases ; metabolism ; Mesenchymal Stromal Cells ; cytology ; metabolism ; Rabbits
8.The functional significance of dentin sialoprotein-phosphophoryn and dentin sialoprotein.
International Journal of Oral Science 2018;10(4):31-31
Phosphophoryn (PP) and dentin sialoprotein (DSP) are the most dominant non-collagenous proteins in dentin. PP is an extremely acidic protein that can function as a mineral nucleator for dentin mineralization. DSP was first identified in 1981, yet its functional significance is still controversial. Historically, these two proteins were considered to be independently synthesized and secreted by dental pulp cells into the developing dentin matrix. However, with the identification of the DSP coding sequence in 1994, followed 2 years later by the finding that the PP coding sequence was located immediately downstream from the DSP sequence, it became immediately clear that DSP and PP proteins were derived from a single DSP-PP (i.e., dentin sialophosphoprotein, DSPP) transcript. Since DSPP cDNA became available, tremendous progress has been made in studying DSP-PP mRNA distribution and DSP generation from the DSP-PP precursor protein at specific cleavage sites by protease tolloid-related-1 (TLR1) or bone morphogenetic protein 1 (BMP1). The functions of DSP-PP and DSP were investigated via DSP-PP knockout (KO) and DSP knockin in DSP-PP KO mice. In addition, a number of in vitro studies aimed to elucidate DSPP and DSP function in dental pulp cells.
Animals
;
Dentinogenesis
;
physiology
;
Extracellular Matrix Proteins
;
physiology
;
Humans
;
Mice
;
Phosphoproteins
;
physiology
;
Sialoglycoproteins
;
physiology
9.Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation.
Zefeng ZHENG ; Weiliang SHEN ; Huihui LE ; Xuesong DAI ; Hongwei OUYANG ; Weishan CHEN
Journal of Zhejiang University. Medical sciences 2016;45(2):120-125
OBJECTIVETo investigate the effects of three-dimensional parallel collagen scaffold on the cell shape, arrangement and extracellular matrix formation of tendon stem cells.
METHODSParallel collagen scaffold was fabricated by unidirectional freezing technique, while random collagen scaffold was fabricated by freeze-drying technique. The effects of two scaffolds on cell shape and extracellular matrix formation were investigated in vitro by seeding tendon stem/progenitor cells and in vivo by ectopic implantation.
RESULTSParallel and random collagen scaffolds were produced successfully. Parallel collagen scaffold was more akin to tendon than random collagen scaffold. Tendon stem/progenitor cells were spindle-shaped and unified orientated in parallel collagen scaffold, while cells on random collagen scaffold had disorder orientation. Two weeks after ectopic implantation, cells had nearly the same orientation with the collagen substance. In parallel collagen scaffold, cells had parallel arrangement, and more spindly cells were observed. By contrast, cells in random collagen scaffold were disorder.
CONCLUSIONParallel collagen scaffold can induce cells to be in spindly and parallel arrangement, and promote parallel extracellular matrix formation; while random collagen scaffold can induce cells in random arrangement. The results indicate that parallel collagen scaffold is an ideal structure to promote tendon repairing.
Collagen ; chemistry ; Extracellular Matrix ; physiology ; Freeze Drying ; Freezing ; Humans ; Stem Cells ; cytology ; Tendons ; cytology ; growth & development ; Tissue Engineering ; Tissue Scaffolds ; chemistry
10.Effects of in vitro continuous passaging on the phenotype of mouse hyaline chondrocytes and the balance of the extra- cellular matrix.
Linyi CAI ; Xiangli KONG ; Jing XIE
West China Journal of Stomatology 2016;34(3):248-254
OBJECTIVEThis study aimed to investigate the effects of in vitro continuous passaging on the morphological phenotype and differentiation characteristics of mouse hyaline chondrocytes, as well as on the balance of the extracellular matrix (ECM).
METHODSEnzymatic digestion was conducted to isolate mouse hyaline chondrocytes, which expanded over five passages in vitro. Hematoxylin-eosin stain was used to show the changes in chondrocyte morphology. Semi-quantitative polymerase chain reaction was performed to analyze the mRNA changes in the marker genes, routine genes, matrix metalloproteinases (MMPs), and tissue inhibitors of MMPs (TIMPs) in chondrocytes. Zymography was carried out to elucidate changes in gelatinase activities.
RESULTSAfter continuous expansion in vitro, the morphology of round or polygonal chondrocytes changed to elongated and spindled shape. The expression of marker genes significantly decreased (P < 0.05), and it was almost negatively expressed by P5 chondrocytes. By contrast, the down regulation of routine genes was insignificant. The gene expression levels of MMPs and TIMPs both decreased (P < 0.05), but the change in MMP-1 and TIMP-1 was not statistically significant (P > 0.05). Meanwhile, the ratio of MMPs/TIMPs was altered. At the protein level, the activities of gelatinases decreased after passaging, especially for P4 and P5 chondrocytes (P < 0.05).
CONCLUSIONSerially passaged chondrocytes dedifferentiated and lost specific phenotypic characteristics during in vitro expansion culture. Simultaneously, the anabolism and catabolism of the cartilage ECM became uncontrollable and led to the imbalance of ECM homeostasis. When hyaline chondrocytes are applied in research on relevant diseases or cartilage tissue engineering, P0-P2 chondrocytes should be used.
Animals ; Cartilage ; Cell Differentiation ; Cells, Cultured ; Chondrocytes ; physiology ; Cytoskeleton ; Extracellular Matrix ; Gelatinases ; Gene Expression ; Hyalin ; physiology ; Matrix Metalloproteinase 1 ; Matrix Metalloproteinases ; Mice ; RNA, Messenger ; Tissue Engineering ; Tissue Inhibitor of Metalloproteinase-1 ; Tissue Inhibitor of Metalloproteinases

Result Analysis
Print
Save
E-mail