1.Si-Wu-Tang attenuates liver fibrosis via regulating lncRNA H19-dependent pathways involving cytoskeleton remodeling and ECM deposition.
Jiaorong QU ; Xiaoyong XUE ; Zhixing WANG ; Zhi MA ; Kexin JIA ; Fanghong LI ; Yinhao ZHANG ; Ruiyu WU ; Fei ZHOU ; Piwen ZHAO ; Xiaojiaoyang LI
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):31-46
Liver fibrosis is a dynamic wound-healing response characterized by the agglutination of the extracellular matrix (ECM). Si-Wu-Tang (SWT), a traditional Chinese medicine (TCM) formula, is known for treating gynecological diseases and liver fibrosis. Our previous studies demonstrated that long non-coding RNA H19 (H19) was markedly upregulated in fibrotic livers while its deficiency markedly reversed fibrogenesis. However, the mechanisms by which SWT influences H19 remain unclear. Thus, we established a bile duct ligation (BDL)-induced liver fibrosis model to evaluate the hepatoprotective effects of SWT on various cells in the liver. Our results showed that SWT markedly improved ECM deposition and bile duct reactions in the liver. Notably, SWT relieved liver fibrosis by regulating the transcription of genes involved in the cytoskeleton remodeling, primarily in hepatic stellate cells (HSCs), and influencing cytoskeleton-related angiogenesis and hepatocellular injury. This modulation collectively led to reduced ECM deposition. Through extensive bioinformatics analyses, we determined that H19 acted as a miRNA sponge and mainly inhibited miR-200, miR-211, and let7b, thereby regulating the above cellular regulatory pathways. Meanwhile, SWT reversed H19-related miRNAs and signaling pathways, diminishing ECM deposition and liver fibrosis. However, these protective effects of SWT were diminished with the overexpression of H19 in vivo. In conclusion, our study elucidates the underlying mechanisms of SWT from the perspective of H19-related signal networks and proposes a potential SWT-based therapeutic strategy for the treatment of liver fibrosis.
Humans
;
RNA, Long Noncoding/genetics*
;
Liver Cirrhosis/genetics*
;
Liver/metabolism*
;
Hepatic Stellate Cells/pathology*
;
MicroRNAs/metabolism*
;
Extracellular Matrix/metabolism*
;
Drugs, Chinese Herbal
2.Extracellular matrix remodelling in dental pulp tissue of carious human teeth through the prism of single-cell RNA sequencing.
Anamaria BALIC ; Dilara PERVER ; Pierfrancesco PAGELLA ; Hubert REHRAUER ; Bernd STADLINGER ; Andreas E MOOR ; Viola VOGEL ; Thimios A MITSIADIS
International Journal of Oral Science 2023;15(1):30-30
Carious lesions are bacteria-caused destructions of the mineralised dental tissues, marked by the simultaneous activation of immune responses and regenerative events within the soft dental pulp tissue. While major molecular players in tooth decay have been uncovered during the past years, a detailed map of the molecular and cellular landscape of the diseased pulp is still missing. In this study we used single-cell RNA sequencing analysis, supplemented with immunostaining, to generate a comprehensive single-cell atlas of the pulp of carious human teeth. Our data demonstrated modifications in the various cell clusters within the pulp of carious teeth, such as immune cells, mesenchymal stem cells (MSC) and fibroblasts, when compared to the pulp of healthy human teeth. Active immune response in the carious pulp tissue is accompanied by specific changes in the fibroblast and MSC clusters. These changes include the upregulation of genes encoding extracellular matrix (ECM) components, including COL1A1 and Fibronectin (FN1), and the enrichment of the fibroblast cluster with myofibroblasts. The incremental changes in the ECM composition of carious pulp tissues were further confirmed by immunostaining analyses. Assessment of the Fibronectin fibres under mechanical strain conditions showed a significant tension reduction in carious pulp tissues, compared to the healthy ones. The present data demonstrate molecular, cellular and biomechanical alterations in the pulp of human carious teeth, indicative of extensive ECM remodelling, reminiscent of fibrosis observed in other organs. This comprehensive atlas of carious human teeth can facilitate future studies of dental pathologies and enable comparative analyses across diseased organs.
Humans
;
Dental Pulp
;
Fibronectins
;
Extracellular Matrix/pathology*
;
Dental Caries
;
Sequence Analysis, RNA
3.Dammarane-type triterpenoid saponins isolated from Gynostemma pentaphyllum ameliorate liver fibrosis via agonizing PP2Cα and inhibiting deposition of extracellular matrix.
Yue LIU ; Yating YANG ; Hanghang WANG ; Han LI ; Qi LV ; Xiachang WANG ; Dalei WU ; Lihong HU ; Yinan ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(8):599-609
Gypenosides, structurally analogous to ginsenosides and derived from a sustainable source, are recognized as the principal active compounds found in Gynostemma pentaphyllum, a Chinese medicinal plant used in the treatment of the metabolic syndrome. By bioactive tracking isolation of the plants collected from different regions across China, we obtained four new gypenosides (1-4), together with nine known gypenosides (5-13), from the methanol extract of the plant. The structures of new gypenosides were elucidated by one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) spectra, complemented by chemical degradation experiments. Through comprehensive evaluation involving COL1A1 promoter assays and PP2Cα activity assays, we established a definitive structure-activity relationship for these dammarane-type triterpenoids, affirming the indispensability of the C-3 saccharide chain and C-17 lactone ring in effectively impeding extracellular matrix (ECM) deposition within hepatic stellate cells. Further in vivo study on the CCl4-induced liver damage mouse model corroborated that compound 5 significantly ameliorated the process of hepatic fibrosis by oral administration. These results underscore the potential of dammarane-type triterpenoids as prospective anti-fibrotic leads and highlight their prevalence as key molecular frameworks in the therapeutic intervention of chronic hepatic disorders.
Animals
;
Mice
;
Gynostemma
;
Liver Cirrhosis/drug therapy*
;
Triterpenes/pharmacology*
;
Ginsenosides
;
Extracellular Matrix
;
Dammaranes
4.Application of decellularization-recellularization technique in plastic and reconstructive surgery.
Yujia SHANG ; Guanhuier WANG ; Yonghuan ZHEN ; Na LIU ; Fangfei NIE ; Zhenmin ZHAO ; Hua LI ; Yang AN
Chinese Medical Journal 2023;136(17):2017-2027
In the field of plastic and reconstructive surgery, the loss of organs or tissues caused by diseases or injuries has resulted in challenges, such as donor shortage and immunosuppression. In recent years, with the development of regenerative medicine, the decellularization-recellularization strategy seems to be a promising and attractive method to resolve these difficulties. The decellularized extracellular matrix contains no cells and genetic materials, while retaining the complex ultrastructure, and it can be used as a scaffold for cell seeding and subsequent transplantation, thereby promoting the regeneration of diseased or damaged tissues and organs. This review provided an overview of decellularization-recellularization technique, and mainly concentrated on the application of decellularization-recellularization technique in the field of plastic and reconstructive surgery, including the remodeling of skin, nose, ears, face, and limbs. Finally, we proposed the challenges in and the direction of future development of decellularization-recellularization technique in plastic surgery.
Tissue Engineering/methods*
;
Tissue Scaffolds/chemistry*
;
Surgery, Plastic
;
Regenerative Medicine/methods*
;
Extracellular Matrix
5.Effect of a novel phosphodiesterase 5 inhibitor, CPD1, on renal interstitial fibrosis after unilateral renal ischemia-reperfusion injury.
Ao-Lu LIU ; Zhuang LI ; Mei-Zhi LU ; Hao-Heng QIU ; Zhong-Lian XIE ; Xiao-Qing LIU ; Allan Zi-Jian ZHAO ; Yun-Ping MU ; Fang-Hong LI
Acta Physiologica Sinica 2023;75(1):1-9
This study was designed to evaluate the protective effect of CPD1, a novel phosphodiesterase 5 inhibitor, on renal interstitial fibrosis after unilateral renal ischemia-reperfusion injury (UIRI). Male BALB/c mice were subjected to UIRI, and treated with CPD1 once daily (i.g, 5 mg/kg). Contralateral nephrectomy was performed on day 10 after UIRI, and the UIRI kidneys were harvested on day 11. Hematoxylin-eosin (HE), Masson trichrome and Sirius Red staining methods were used to observe the renal tissue structural lesions and fibrosis. Immunohistochemical staining and Western blot were used to detect the expression of proteins related to fibrosis. HE, Sirius Red and Masson trichrome staining showed that CPD1-treated UIRI mice had lower extent of tubular epithelial cell injury and deposition of extracellular matrix (ECM) in renal interstitium compared with those in the fibrotic mouse kidneys. The results from immunohistochemistry and Western blot assay indicated significantly decreased protein expressions of type I collagen, fibronectin, plasminogen activator inhibitor-1 (PAI-1) and α-smooth muscle actin (α-SMA) after CPD1 treatment. In addition, CPD1 dose-dependently inhibited the expression of ECM-related proteins induced by transforming growth factor β1 (TGF-β1) in normal rat kidney interstitial fibroblasts (NRK-49F) and human renal tubular epithelial cell line (HK-2). In summary, the novel PDE inhibitor, CPD1, displays strong protective effects against UIRI and fibrosis by suppressing TGF-β signaling pathway and regulating the balance between ECM synthesis and degradation through PAI-1.
Animals
;
Humans
;
Male
;
Mice
;
Rats
;
Extracellular Matrix Proteins
;
Fibrosis
;
Kidney
;
Kidney Diseases
;
Phosphodiesterase 5 Inhibitors
;
Plasminogen Activator Inhibitor 1
6.Research, development and application of collagen: a review.
Tao YE ; Qi XIANG ; Yan YANG ; Yadong HUANG
Chinese Journal of Biotechnology 2023;39(3):942-960
Collagen, which widely exists in skin, bone, muscle and other tissues, is a major structural protein in mammalian extracellular matrix. It participates in cell proliferation, differentiation, migration and signal transmission, plays an important role in tissue support and repair and exerts a protective effect. Collagen is widely used in tissue engineering, clinical medicine, food industry, packaging materials, cosmetics and medical beauty due to its good biological characteristics. This paper reviews the biological characteristics of collagen and its application in bioengineering research and development in recent years. Finally, we prospect the future application of collagen as a biomimetic material.
Animals
;
Collagen/analysis*
;
Tissue Engineering/methods*
;
Extracellular Matrix/metabolism*
;
Biomimetic Materials/chemistry*
;
Bone and Bones
;
Tissue Scaffolds
;
Mammals/metabolism*
7.Pyridine degradation characteristics of Rhodococcus sp. LV4 under high salinity conditions.
Ying WANG ; Hu CHEN ; Mengdi XU ; Yongkang LÜ
Chinese Journal of Biotechnology 2023;39(3):1202-1216
Biodegradation of pyridine pollutant by microorganisms is one of the economical and effective methods to solve the environmental pollution of pyridine under high salinity conditions. To this end, screening of microorganisms with pyridine degradation capability and high salinity tolerance is an important prerequisite. In this paper, a salt-resistant pyridine degradation bacterium was isolated from the activated sludge of Shanxi coking wastewater treatment plant, and identified as a bacterium belonging to Rhodococcus on the basis of colony morphology and 16S rDNA gene phylogenetic analysis. Salt tolerance experiment showed that strain LV4 could grow and degrade pyridine with the initial concentration of 500 mg/L completely in 0%-6% saline environment. However, when the salinity was higher than 4%, strain LV4 grew slowly and the degradation time of pyridine by strain LV4 was significantly prolonged. Scanning electron microscopy showed that the cell division of strain LV4 became slower, and more granular extracellular polymeric substance (EPS) was induced to secrete in high salinity environment. When the salinity was not higher than 4%, strain LV4 responded to the high salinity environment mainly through increasing the protein content in EPS. The optimum conditions for pyridine degradation by strain LV4 at 4% salinity were 30 ℃, pH 7.0 and 120 r/min (DO 10.30 mg/L). Under these optimal conditions, strain LV4 could completely degrade pyridine with an initial concentration of 500 mg/L at a maximum rate of (29.10±0.18) mg/(L·h) after 12 h adaptation period, and the total organic carbon (TOC) removal efficiency reached 88.36%, indicating that stain LV4 has a good mineralization effect on pyridine. By analyzing the intermediate products in pyridine degradation process, it was speculated that strain LV4 achieved pyridine ring opening and degradation mainly through two metabolic pathways: pyridine-ring hydroxylation and pyridine-ring hydrogenation. The rapid degradation of pyridine by strain LV4 in high salinity environment indicates its application potential in the pollution control of high salinity pyridine environment.
Rhodococcus/genetics*
;
Phylogeny
;
Extracellular Polymeric Substance Matrix/metabolism*
;
Sewage
;
Biodegradation, Environmental
;
Pyridines/metabolism*
8.Research Progress on the Role of Laminin Subunit Alpha 4 in Diseases.
Jing-Jing YU ; Li-Jun ZHANG ; Chun-Cao HE ; Yi-Fei CAO ; Jun YANG
Acta Academiae Medicinae Sinicae 2023;45(1):92-100
Laminin subunit alpha 4 (LAMA4),a member of the laminin family,is present in the intercellular matrix of adult tissues as a major component of basement membrane.LAMA4 is involved in the adhesion of cells and can bind to corresponding integrins to activate relevant signaling pathways,playing an essential role in the growth,proliferation,and migration of cells.It has been demonstrated that LAMA4 is associated with the occurrence and development of a variety of diseases including tumors,and the expression of LAMA4 can be used as a biomarker of tumor diagnosis and prognosis.This paper summarizes the current research progress in LAMA4 with the focus on the relationship between LAMA4 and diseases,especially tumor,with a view to provide new directions for the future research.
Adult
;
Humans
;
Laminin
;
Extracellular Matrix
9.Matrix stiffening related lncRNA SNHG8 regulates chemosensitivity of ovarian cancer.
Zina CHENG ; Xiaolu MA ; Quanyou ZHANG ; Weiyi CHEN
Journal of Biomedical Engineering 2023;40(1):87-94
Extracellular matrix (ECM) has been implicated in tumor progress and chemosensitivity. Ovarian cancer brings a great threat to the health of women with a significant feature of high mortality and poor prognosis. However, the potential significance of matrix stiffness in the pattern of long non-coding RNAs (lncRNAs) expression and ovarian cancer drug sensitivity is still largely unkown. Here, based on RNA-seq data of ovarian cancer cell cultured on substrates with different stiffness, we found that a great amount of lncRNAs were upregulated in stiff group, whereas SNHG8 was significantly downregulated, which was further verified in ovarian cancer cells cultured on polydimethylsiloxane (PDMS) hydrogel. Knockdown of SNHG8 led to an impaired efficiency of homologous repair, and decreased cellular sensitivity to both etoposide and cisplatin. Meanwhile, the results of the GEPIA analysis indicated that the expression of SNHG8 was significantly decreased in ovarian cancer tissues, which was negatively correlated with the overall survival of patients with ovarian cancer. In conclusion, matrix stiffening related lncRNA SNHG8 is closely related to chemosensitivity and prognosis of ovarian cancer, which might be a novel molecular marker for chemotherapy drug instruction and prognosis prediction.
Female
;
Humans
;
Cisplatin/pharmacology*
;
Elasticity/physiology*
;
Etoposide
;
Extracellular Matrix/physiology*
;
Ovarian Neoplasms/metabolism*
;
RNA, Long Noncoding/metabolism*
10.Expression of CD24 gene in human malignant pleural mesothelioma and its relationship with prognosis.
Bin LI ; Chong Xi ZHOU ; Yuan Qian PU ; Lu QIU ; Wen MEI ; Wei XIONG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2023;41(3):168-176
Objective: To investigate the expression of CD24 gene in human malignant pleural mesothelioma (MPM) cells and tissues, and evaluate its relationship with clinicopathological characteristics and clinical prognosis of MPM patients. Methods: In February 2021, UALCAN database was used to analyze the correlation between CD24 gene expression and clinicopathological characteristics in 87 cases of MPM patients. The TIMER 2.0 platform was used to explore the relationship between the expression of CD24 in MPM and tumor immune infiltrating cells. cBioportal online tool was used to analyze the correlation between CD24 and MPM tumor marker gene expression. RT-qPCR was used to analyze the expressions of CD24 gene in human normal pleural mesothelial cell lines LP9 and MPM cell lines NCI-H28 (epithelial type), NCI-H2052 (sarcoma type), and NCI-H2452 (biphasic mixed type). RT-qPCR was performed to detect the expressions of CD24 gene in 18 cases of MPM tissues and matched normal pleural tissues. The expression difference of CD24 protein in normal mesothelial tissue and MPM tissue was analyzed by immunohistochemistry. A Kaplan-Meier model was constructed to explore the influence of CD24 gene expression on the prognosis of MPM patients, and Cox regression analysis of prognostic factors in MPM patients was performed. Results: The CD24 gene expression without TP53 mutation MPM patients was significantly higher than that of patients in TP53 mutation (P<0.05). The expression of CD24 gene in MPM was positively correlated with B cells (r(s)=0.37, P<0.001). The expression of CD24 gene had a positive correlation with the expressions of thrombospondin 2 (THBS2) (r(s)=0.26, P<0.05), and had a negative correlation with the expression of epidermal growth factor containing fibulin like extracellular matrix protein 1 (EFEMP1), mesothelin (MSLN) and calbindin 2 (CALB2) (r(s)=-0.31, -0.52, -0.43, P<0.05). RT-qPCR showed that the expression level of CD24 gene in MPM cells (NCI-H28, NCI-H2052 and NCI-H2452) was significantly higher than that in normal pleural mesothelial LP9 cells. The expression level of CD24 gene in MPM tissues was significantly higher than that in matched normal pleural tissues (P<0.05). Immunohistochemistry showed that the expressions of CD24 protein in epithelial and sarcoma MPM tissues were higher than those of matched normal pleural tissues. Compared with low expression of CD24 gene, MPM patients with high expression of CD24 gene had lower overall survival (HR=2.100, 95%CI: 1.336-3.424, P<0.05) and disease-free survival (HR=1.800, 95%CI: 1.026-2.625, P<0.05). Cox multivariate analysis showed that compared with the biphasic mixed type, the epithelial type was a protective factor for the prognosis of MPM patients (HR=0.321, 95%CI: 0.172-0.623, P<0.001). Compared with low expression of CD24 gene, high expression of CD24 gene was an independent risk factor for the prognosis of MPM patients (HR=2.412, 95%CI: 1.291-4.492, P=0.006) . Conclusion: CD24 gene and protein are highly expressed in MPM tissues, and the high expression of CD24 gene suggests poor prognosis in MPM patients.
Humans
;
Mesothelioma, Malignant
;
Mesothelioma/diagnosis*
;
Lung Neoplasms/genetics*
;
Pleural Neoplasms/diagnosis*
;
Prognosis
;
Biomarkers, Tumor/analysis*
;
Extracellular Matrix Proteins
;
CD24 Antigen/genetics*

Result Analysis
Print
Save
E-mail