1.Recognition of high-frequency steady-state visual evoked potential for brain-computer interface.
Ruixin LUO ; Xinyi DOU ; Xiaolin XIAO ; Qiaoyi WU ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2023;40(4):683-691
Coding with high-frequency stimuli could alleviate the visual fatigue of users generated by the brain-computer interface (BCI) based on steady-state visual evoked potential (SSVEP). It would improve the comfort and safety of the system and has promising applications. However, most of the current advanced SSVEP decoding algorithms were compared and verified on low-frequency SSVEP datasets, and their recognition performance on high-frequency SSVEPs was still unknown. To address the aforementioned issue, electroencephalogram (EEG) data from 20 subjects were collected utilizing a high-frequency SSVEP paradigm. Then, the state-of-the-art SSVEP algorithms were compared, including 2 canonical correlation analysis algorithms, 3 task-related component analysis algorithms, and 1 task discriminant component analysis algorithm. The results indicated that they all could effectively decode high-frequency SSVEPs. Besides, there were differences in the classification performance and algorithms' speed under different conditions. This paper provides a basis for the selection of algorithms for high-frequency SSVEP-BCI, demonstrating its potential utility in developing user-friendly BCI.
Humans
;
Brain-Computer Interfaces
;
Evoked Potentials, Visual
;
Algorithms
;
Discriminant Analysis
;
Electroencephalography
2.Visual function changes of dysthyroid optic neuropathy and ROC curve analysis for early diagnostic indicators.
Sha WANG ; Jinwei WANG ; Lu CHEN ; Jia TAN
Journal of Central South University(Medical Sciences) 2023;48(8):1197-1202
OBJECTIVES:
Dysthyroid optic neuropathy (DON) is a class of diseases that makes seriously endanger to the vision of patients with thyroid-associated ophthalmopathy. This study aims to observe the visual function changes in patients with DON, and to evaluate the diagnostic value of indicators diagnosing DON.
METHODS:
A retrospective study was conducted on 98 eyes of 49 patients with dysthyroid optic neuropathy (DON) who were treated in Xiangya Hospital of Central South University from January 2017 to December 2019. All patients were received the examination of best corrected visual acuity (BCVA), Humphrey visual field, visual evoked potential (VEP), and contrast sensitivity. Ninety-eight eyes were divided into a DON group (45 eyes) and a non-DON group (53 eyes). T-test was used to compare the related indicators between the 2 groups. The sensitivity and specificity of each indicator were analyzed by receiver operating characteristic (ROC) curve.
RESULTS:
The BCVA and visual field index (VFI) of the DON group were significantly lower than those of the non-DON group (all P<0.05). The mean deviation (MD) and pattern standard deviation (PSD) of the DON group were significantly higher than those of the non-DON group (all P<0.05). The low frequency contrast sensitivity (CSL), medium frequency contrast sensitivity (CSM), and high frequency contrast sensitivity (CSH) of the DON group were significantly lower than those of the non-DON group (all P<0.05), with CSH being particularly prominent. Compared with the non-DON group, at spatial frequencies of 15°, 30°, and 60°, the amplitude of N135 wave was significantly reduced, and the latency of N75 wave, P100 wave, and N135 wave was significantly prolonged in the DON group (all P<0.05); at spatial frequencies of 15° and 30°, the amplitude of P100 wave was significantly reduced in the DON group (P<0.05). The ROC curve analysis results showed that the area under the curve (AUC) of VFI, CSL, CSM, CSH and 15° P100 amplitude diagnosing DON were 0.812, 0.841, 0.880, 0.784, and 0.791, respectively, with CSM possessing the highest sensitivity and specificity.
CONCLUSIONS
The visual function of patients with DON is decreased. VFI, contrast sensitivity of low, medium, and high frequency, and 15° P100 wave amplitude might be effective indicators for early diagnosis of DON.
Humans
;
ROC Curve
;
Optic Nerve Diseases/complications*
;
Retrospective Studies
;
Evoked Potentials, Visual
;
Graves Ophthalmopathy
3.Advances in brain-computer interface based on high-frequency steady-state visual evoked potential.
Chenguang ZHENG ; Yang LIU ; Xiaolin XIAO ; Xiaoyu ZHOU ; Fangzhou XU ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2023;40(1):155-162
Steady-state visual evoked potential (SSVEP) has been widely used in the research of brain-computer interface (BCI) system in recent years. The advantages of SSVEP-BCI system include high classification accuracy, fast information transform rate and strong anti-interference ability. Most of the traditional researches induce SSVEP responses in low and middle frequency bands as control signals. However, SSVEP in this frequency band may cause visual fatigue and even induce epilepsy in subjects. In contrast, high-frequency SSVEP-BCI provides a more comfortable and natural interaction despite its lower amplitude and weaker response. Therefore, it has been widely concerned by researchers in recent years. This paper summarized and analyzed the related research of high-frequency SSVEP-BCI in the past ten years from the aspects of paradigm and algorithm. Finally, the application prospect and development direction of high-frequency SSVEP were discussed and prospected.
Humans
;
Brain-Computer Interfaces
;
Evoked Potentials, Visual
;
Algorithms
4.Research on phase modulation to enhance the feature of high-frequency steady-state asymmetric visual evoked potentials.
Wei ZHAO ; Lichao XU ; Xiaolin XIAO ; Weibo YI ; Yuanfang CHEN ; Kun WANG ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2023;40(3):409-417
High-frequency steady-state asymmetric visual evoked potential (SSaVEP) provides a new paradigm for designing comfortable and practical brain-computer interface (BCI) systems. However, due to the weak amplitude and strong noise of high-frequency signals, it is of great significance to study how to enhance their signal features. In this study, a 30 Hz high-frequency visual stimulus was used, and the peripheral visual field was equally divided into eight annular sectors. Eight kinds of annular sector pairs were selected based on the mapping relationship of visual space onto the primary visual cortex (V1), and three phases (in-phase[0º, 0º], anti-phase [0º, 180º], and anti-phase [180º, 0º]) were designed for each annular sector pair to explore response intensity and signal-to-noise ratio under phase modulation. A total of 8 healthy subjects were recruited in the experiment. The results showed that three annular sector pairs exhibited significant differences in SSaVEP features under phase modulation at 30 Hz high-frequency stimulation. And the spatial feature analysis showed that the two types of features of the annular sector pair in the lower visual field were significantly higher than those in the upper visual field. This study further used the filter bank and ensemble task-related component analysis to calculate the classification accuracy of annular sector pairs under three-phase modulations, and the average accuracy was up to 91.5%, which proved that the phase-modulated SSaVEP features could be used to encode high- frequency SSaVEP. In summary, the results of this study provide new ideas for enhancing the features of high-frequency SSaVEP signals and expanding the instruction set of the traditional steady state visual evoked potential paradigm.
Humans
;
Evoked Potentials, Visual
;
Brain-Computer Interfaces
;
Healthy Volunteers
;
Signal-To-Noise Ratio
5.Clinical features of 6 children with uridine-responsive developmental epileptic encephalopathy 50 caused by CAD gene variants.
Ling ZHOU ; Fang FANG ; Jie DENG ; Shuang Jun LIU ; Chun Hong CHEN ; Hua LI ; Chang Hong REN ; Ye WU
Chinese Journal of Pediatrics 2023;61(5):453-458
Objective: To analyze the clinical features of children with uridine responsive developmental epileptic encephalopathy 50 (DEE50) caused by CAD gene variants. Methods: A retrospective study was conducted on 6 patients diagnosed with uridine-responsive DEE50 caused by CAD gene variants at Beijing Children's Hospital and Peking University First Hospital from 2018 to 2022. The epileptic seizures, anemia, peripheral blood smear, cranial magnetic resonance imaging (MRI), visual evoked potential (VEP), genotype features and the therapeutic effect of uridine were descriptively analyzed. Results: A total of 6 patients, including 3 boys and 3 girls, aged 3.5(3.2,5.8) years, were enrolled in this study. All patients presented with refractory epilepsy, anemia with anisopoikilocytosis and global developmental delay with regression. The age of epilepsy onset was 8.5 (7.5, 11.0) months, and focal seizures were the most common seizure type (6 cases). Anemia ranged from mild to severe. Four patients had peripheral blood smears prior to uridine administration, showing erythrocytes of variable size and abnormal morphology, and normalized at 6 (2, 8) months after uridine supplementation. Two patients suffered from strabismus, 3 patients had VEP examinations, indicating of suspicious optic nerve involvement, and normal fundus examinations. VEP was re-examined at 1 and 3 months after uridine supplementation, suggesting significant improvement or normalization. Cranial MRI were performed at 5 patients, demonstrating cerebral and cerebellar atrophy. They had cranial MRI re-examined after uridine treatment with a duration of 1.1 (1.0, 1.8) years, indicating significant improvement in brain atrophy. All patients received uridine orally at a dose of 100 mg/(kg·d), the age at initiation of uridine treatment was 1.0 (0.8, 2.5) years, and the duration of treatment was 2.4 (2.2, 3.0) years. Immediate cession of seizures was observed within days to a week after uridine supplementation. Four patients received uridine monotherapy and were seizure free for 7 months, 2.4 years, 2.4 years and 3.0 years respectively. One patient achieved seizure free for 3.0 years after uridine supplementation and had discontinued uridine for 1.5 years. Two patients were supplemented with uridine combined with 1 to 2 anti-seizure medications and had a reduced seizure frequency of 1 to 3 times per year, and they had achieved seizure free for 8 months and 1.4 years respectively. Conclusions: The clinical manifestations of DEE50 caused by CAD gene variants present a triad of refractory epilepsy, anemia with anisopoikilocytosis, and psychomotor retardation with regression, accompanied by suspected optic nerve involvement, all of which respond to uridine treatment. Prompt diagnosis and immediate uridine supplementation could lead to significant clinical improvement.
Male
;
Female
;
Humans
;
Child
;
Infant
;
Epilepsy/genetics*
;
Retrospective Studies
;
Drug Resistant Epilepsy
;
Uridine
;
Evoked Potentials, Visual
;
Anemia
;
Electroencephalography/adverse effects*
;
Neurodegenerative Diseases
6.Objective Assessment of Visual Field Defects Caused by Optic Chiasm and Its Posterior Visual Pathway Injury.
Jian XIANG ; Xu WANG ; Li-Li YU ; Kang-Jia JIN ; Ying-Kai YANG
Journal of Forensic Medicine 2023;39(4):350-359
OBJECTIVES:
To investigate the characteristics and objective assessment method of visual field defects caused by optic chiasm and its posterior visual pathway injury.
METHODS:
Typical cases of visual field defects caused by injuries to the optic chiasm, optic tracts, optic radiations, and visual cortex were selected. Visual field examinations, visual evoked potential (VEP) and multifocal visual evolved potential (mfVEP) measurements, craniocerebral CT/MRI, and retinal optical coherence tomography (OCT) were performed, respectively, and the aforementioned visual electrophysiological and neuroimaging indicators were analyzed comprehensively.
RESULTS:
The electrophysiological manifestations of visual field defects caused by optic chiasm injuries were bitemporal hemianopsia mfVEP abnormalities. The visual field defects caused by optic tract, optic radiation, and visual cortex injuries were all manifested homonymous hemianopsia mfVEP abnormalities contralateral to the lesion. Mild relative afferent pupil disorder (RAPD) and characteristic optic nerve atrophy were observed in hemianopsia patients with optic tract injuries, but not in patients with optic radiation or visual cortex injuries. Neuroimaging could provide morphological evidence of damages to the optic chiasm and its posterior visual pathway.
CONCLUSIONS
Visual field defects caused by optic chiasm, optic tract, optic radiation, and visual cortex injuries have their respective characteristics. The combined application of mfVEP and static visual field measurements, in combination with neuroimaging, can maximize the assessment of the location and degree of visual pathway damage, providing an effective scheme for the identification of such injuries.
Humans
;
Optic Chiasm/pathology*
;
Visual Pathways/pathology*
;
Visual Fields
;
Evoked Potentials, Visual
;
Random Amplified Polymorphic DNA Technique
;
Hemianopsia/complications*
;
Vision Disorders/pathology*
;
Optic Nerve Injuries/diagnostic imaging*
;
Brain Injuries, Traumatic/diagnostic imaging*
7.The Value of VR-PVEP in Objective Evaluation of Monocular Refractive Visual Impairment.
Hong-Xia HAO ; Jie-Min CHEN ; Rong-Rong WANG ; Xiao-Ying YU ; Meng WANG ; Zhi-Lu ZHOU ; Yan-Liang SHENG ; Wen-Tao XIA
Journal of Forensic Medicine 2023;39(4):382-387
OBJECTIVES:
To study the virtual reality-pattern visual evoked potential (VR-PVEP) P100 waveform characteristics of monocular visual impairment with different impaired degrees under simultaneous binocular perception and monocular stimulations.
METHODS:
A total of 55 young volunteers with normal vision (using decimal recording method, far vision ≥0.8 and near vision ≥0.5) were selected to simulate three groups of monocular refractive visual impairment by interpolation method. The sum of near and far vision ≤0.2 was Group A, the severe visual impairment group; the sum of near and far vision <0.8 was Group B, the moderate visual impairment group; and the sum of near and far vision ≥0.8 was Group C, the mild visual impairment group. The volunteers' binocular normal visions were set as the control group. The VR-PVEP P100 peak times measured by simultaneous binocular perception and monocular stimulation were compared at four spatial frequencies 16×16, 24×24, 32×32 and 64×64.
RESULTS:
In Group A, the differences between P100 peak times of simulant visual impairment eyes and simultaneous binocular perception at 24×24, 32×32 and 64×64 spatial frequencies were statistically significant (P<0.05); and the P100 peak time of normal vision eyes at 64×64 spatial frequency was significantly different from the simulant visual impairment eyes (P<0.05). In Group B, the differences between P100 peak times of simulant visual impairment eyes and simultaneous binocular perception at 16×16, 24×24 and 64×64 spatial frequencies were statistically significant (P<0.05); and the P100 peak time of normal vision eyes at 64×64 spatial frequency was significantly different from the simulant visual impairment eyes (P<0.05). In Group C, there was no significant difference between P100 peak times of simulant visual impairment eyes and simultaneous binocular perception at all spatial frequencies (P>0.05). There was no significant difference in the P100 peak times measured at all spatial frequencies between simulant visual impairment eyes and simultaneous binocular perception in the control group (P>0.05).
CONCLUSIONS
VR-PVEP can be used for visual acuity evaluation of patients with severe and moderate monocular visual impairment, which can reflect the visual impairment degree caused by ametropia. VR-PVEP has application value in the objective evaluation of visual function and forensic clinical identification.
Humans
;
Evoked Potentials, Visual
;
Vision, Ocular
;
Vision, Binocular/physiology*
;
Vision Disorders/diagnosis*
;
Virtual Reality
8.Protective effect of Epothilone D against traumatic optic nerve injury in rats.
Peng Fei WANG ; Sheng Ping LUO ; Chen SHEN ; Zhe Hao YU ; Zu Qing NIE ; Zhi Wei LI ; Jie WEN ; Meng LI ; Xia CAO
Journal of Southern Medical University 2022;42(4):575-583
OBJECTIVE:
To investigate the therapeutic effect of Epothilone D on traumatic optic neuropathy (TON) in rats.
METHODS:
Forty-two SD rats were randomized to receive intraperitoneal injection of 1.0 mg/kg Epothilone D or DMSO (control) every 3 days until day 28, and rat models of TON were established on the second day after the first administration. On days 3, 7, and 28, examination of flash visual evoked potentials (FVEP), immunofluorescence staining and Western blotting were performed to examine the visual pathway features, number of retinal ganglion cells (RGCs), GAP43 expression level in damaged axons, and changes of Tau and pTau-396/404 in the retina and optic nerve.
RESULTS:
In Epothilone D treatment group, RGC loss rate was significantly decreased by 19.12% (P=0.032) on day 3 and by 22.67% (P=0.042) on day 28 as compared with the rats in the control group, but FVEP examination failed to show physiological improvement in the visual pathway on day 28 in terms of the relative latency of N2 wave (P=0.236) and relative amplitude attenuation of P2-N2 wave (P=0.441). The total Tau content in the retina of the treatment group was significantly increased compared with that in the control group on day 3 (P < 0.001), showing a consistent change with ptau-396/404 level. In the optic nerve axons, the total Tau level in the treatment group was significantly lower than that in the control group on day 7 (P=0.002), but the changes of the total Tau and pTau-396/404 level did not show an obvious correlation. Epothilone D induced persistent expression of GAP43 in the damaged axons, detectable even on day 28 of the experiment.
CONCLUSION
Epothilone D treatment can protect against TON in rats by promoting the survival of injured RGCs, enhancing Tau content in the surviving RGCs, reducing Tau accumulation in injured axons, and stimulating sustained regeneration of axons.
Animals
;
Disease Models, Animal
;
Epothilones
;
Evoked Potentials, Visual
;
Nerve Regeneration/physiology*
;
Optic Nerve Injuries/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Retinal Ganglion Cells/physiology*
9.Formation of the Looming-evoked Innate Defensive Response during Postnatal Development in Mice.
Shanping CHEN ; Huiying TAN ; Zhijie WANG ; Yu-Ting TSENG ; Xiaotao LI ; Liping WANG
Neuroscience Bulletin 2022;38(7):741-752
Environmental threats often trigger innate defensive responses in mammals. However, the gradual development of functional properties of these responses during the postnatal development stage remains unclear. Here, we report that looming stimulation in mice evoked flight behavior commencing at P14-16 and had fully developed by P20-24. The visual-evoked innate defensive response was not significantly altered by sensory deprivation at an early postnatal stage. Furthermore, the percentages of wide-field and horizontal cells in the superior colliculus were notably elevated at P20-24. Our findings define a developmental time window for the formation of the visual innate defense response during the early postnatal period and provide important insight into the underlying mechanism.
Animals
;
Evoked Potentials, Visual
;
Fear/physiology*
;
Mammals
;
Mice
;
Mice, Inbred C57BL
;
Neurons/physiology*
;
Superior Colliculi/physiology*
10.Progresses and prospects on frequency recognition methods for steady-state visual evoked potential.
Yangsong ZHANG ; Min XIA ; Ke CHEN ; Peng XU ; Dezhong YAO
Journal of Biomedical Engineering 2022;39(1):192-197
Steady-state visual evoked potential (SSVEP) is one of the commonly used control signals in brain-computer interface (BCI) systems. The SSVEP-based BCI has the advantages of high information transmission rate and short training time, which has become an important branch of BCI research field. In this review paper, the main progress on frequency recognition algorithm for SSVEP in past five years are summarized from three aspects, i.e., unsupervised learning algorithms, supervised learning algorithms and deep learning algorithms. Finally, some frontier topics and potential directions are explored.
Algorithms
;
Brain-Computer Interfaces
;
Electroencephalography/methods*
;
Evoked Potentials, Visual
;
Photic Stimulation

Result Analysis
Print
Save
E-mail