1.Effect of masticatory positioning on long-term occlusal stability in patients who underwent full mouth rehabilitation: a 10-year follow-up
Heungku KWAK ; Eunsong KWAK ; Ayeon SOHN ; Gyeongje LEE ; Mee-Kyoung SON
Oral Biology Research 2025;49(1):5-
This study evaluated the long-term stability and efficacy of occlusion achieved by setting a normalized chewing position as the therapeutic position in patients with abnormal chewing positions due to tooth loss or malocclusion. Furthermore, the study monitored the recovery rate of the stomatognathic system. Sixteen patients undergoing oral functional rehabilitation participated in the study, utilizing an intraoral Gothic arch tracer to normalize abnormal chewing positions and designate the apex of the resultant chewing patterns as the therapeutic position. The first set of data was gathered during occlusal reconstruction at the point when a therapeutic position was necessary, and the second set was collected approximately 10 years later under the same conditions. Four mandibular movements—chewing movements for hard food (CM-H), chewing movements for soft food (CM-S), border movement (BM), and maximum intercuspation position (MICP)—were compared to assess the long-term stability between the chewing position and occlusion and the recovery rate of the stomatognathic system. The findings showed a 63% concordance between CM-H and MICP, confirming the long-term stability of both the chewing position and occlusion. Furthermore, the concordance between CM-H and CM-S increased by 13%, whereas the alignment between the chewing position and BM increased by 25%. In summary, the concordance across all four movements improved by 19%, demonstrating increased long-term recovery rate of the stomatognathic system. These findings provide clinical evidence that occlusal reconstruction centered on the chewing position offers long-term stability and recovery. By establishing an efficient occlusion that harmonized with the chewing patterns, this approach compensates for age-related declines in chewing function and helps maintain the stomatognathic system health.
2.Developmental competence of chimeric porcine embryos through the aggregation of parthenogenetic embryos and somatic cell nuclear transfer embryos
Joohyeong LEE ; Lian CAI ; Mirae KIM ; Hyerin CHOI ; Dongjin OH ; Ali JAWAD ; Eunsong LEE ; Sang-Hwan HYUN
Korean Journal of Veterinary Research 2023;63(1):e3-
The efficiency of somatic cell nuclear transfer (NT) in pigs is low and requires enhancement. We identified the most efficient method for zona pellucida (ZP) removal and blastomere aggregation in pigs and investigated whether the aggregation of NT and parthenogenetic activation (PA) of blastomeres could reduce embryonic apoptosis and improve the quality of NT-derived embryos by investigating. Embryonic developmental competence after ZP removal using acid Tyrode's solution or protease (pronase E). The embryonic developmental potential of NT-derived blastomeres was also investigated using well-of-the-well or phytohemagglutinin-L. We analyzed apoptosis in aggregate-derived blastocysts. The aggregation rate of protease-treated embryos was lower than that of Tyrode’s solution-treated embryos (69.2% vs. 88.3%). No significant difference was observed between phytohemagglutinin-L and well-of-the-well (35.7%–38.5%). However, 2P1N showed a higher number of blastocysts compared to 3N (73.8% vs. 24.3%) and an increased blastocyst diameter compared to the control and 1P2N (274 μm vs. 230–234 μm). In blastomeres aggregated using phytohemagglutinin-L, the apoptotic cell ratio was significantly higher in 1P2N and 3N than in 3P (5.91%–6.46% vs. 2.94%, respectively). Our results indicate that aggregation of one NT embryo with two PA embryos improved the rate of blastocysts with increased blastocyst diameter.
3.Antioxidant effect of ergothioneine on in vitro maturation of porcine oocytes
Ji-Young JEONG ; Lian CAI ; Mirae KIM ; Hyerin CHOI ; Dongjin OH ; Ali JAWAD ; Sohee KIM ; Haomiao ZHENG ; Eunsong LEE ; Joohyeong LEE ; Sang-Hwan HYUN
Journal of Veterinary Science 2023;24(2):e24-
Background:
Ergothioneine (EGT) is a natural amino acid derivative in various animal organs and is a bioactive compound recognized as a food and medicine.
Objectives:
This study examined the effects of EGT supplementation during the in vitro maturation (IVM) period on porcine oocyte maturation and subsequent embryonic development competence after in vitro fertilization (IVF).
Methods:
Each EGT concentration (0, 10, 50, and 100 µM) was supplemented in the maturation medium during IVM. After IVM, nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species (ROS) levels of oocytes were investigated. In addition, the genes related to cumulus function and antioxidant pathways in oocytes or cumulus cells were investigated. Finally, this study examined whether EGT could affect embryonic development after IVF.
Results:
After IVM, the EGT supplementation group showed significantly higher intracellular GSH levels and significantly lower intracellular ROS levels than the control group. Moreover, the expression levels of hyaluronan synthase 2 and Connexin 43 were significantly higher in the 10 µM EGT group than in the control group. The expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and NAD(P)H quinone dehydrogenase 1 (NQO1) were significantly higher in the oocytes of the 10 µM EGT group than in the control group. In the assessment of subsequent embryonic development after IVF, the 10 µM EGT treatment group improved the cleavage and blastocyst rate significantly than the control group.
Conclusions
Supplementation of EGT improved oocyte maturation and embryonic development by reducing oxidative stress in IVM oocytes.
4.In vitro maturation using αMEM with reduced NaCl enhances maturation and developmental competence of pig oocytes after somatic cell nuclear transfer
Yongjin LEE ; Joohyeong LEE ; Sang-Hwan HYUN ; Geun-Shik LEE ; Eunsong LEE
Journal of Veterinary Science 2022;23(2):e31-
Background:
Compared to medium containing 108 mM sodium chloride (NaCl), in vitromaturation (IVM) using a simple medium with reduced (61.6 mM) NaCl increases the cytoplasmic maturation and embryonic development of pig oocytes.
Objectives:
This study determines the effect of a complex medium containing reduced NaCl on the IVM and embryonic development of pig oocytes.
Methods:
Pig oocytes were matured in Minimum Essential Medium Eagle-alpha modification (αMEM) supplemented with 61.6 (61αMEM) or 108 (108αMEM) mM NaCl, and containing polyvinyl alcohol (PVA) (αMEMP) or pig follicular fluid (PFF) (αMEMF). Medium-199 (M199) served as the control for conventional IVM. Cumulus cell expansion, nuclear maturation, intra-oocyte glutathione (GSH) contents, size of perivitelline space (PVS), and embryonic development after parthenogenesis (PA) and somatic cell nuclear transfer (SCNT) were evaluated after IVM.
Results:
Regardless of PVA or PFF supplementation, oocytes matured in 61αMEM showed increased intra-oocyte GSH contents and width of PVS (p < 0.05), as well as increased blastocyst formation (p < 0.05) after PA and SCNT, as compared to oocytes matured in 108αMEMP and M199. Under conditions of PFF-enriched αMEM, SCNT oocytes matured in 61αMEMF showed higher blastocyst formation (p < 0.05), compared to maturation in 108αMEMF and M199, whereas PA cultured oocytes showed no significant difference.
Conclusions
IVM in αMEM supplemented with reduced NaCl (61.6 mM) enhances the embryonic developmental competence subsequent to PA and SCNT, which attributes toward improved oocyte maturation.
5.Screening of Integrin Heterodimers Expressed Functionally on the Undifferentiated Spermatogonial Stem Cells in the Outbred ICR Mice
Hye Jin PARK ; Jung Im YUN ; Minseok KIM ; Kimyung CHOI ; Eunsong LEE ; Seung Tae LEE
International Journal of Stem Cells 2020;13(3):353-363
Background and Objectives:
Outbred mice are widely used in toxicology, pharmacology, and fundamental biomedical research. However, there have been no reports of in vitro culture systems for spermatogonial stem cells (SSCs) derived from these mice.
Methods:
As a step towards constructing a non-cellular niche supporting the in vitro maintenance of outbred mouse SSC self-renewal, we systematically investigated the types of integrin heterodimers that are expressed transcriptionally, translationally, and functionally in SSCs derived from Imprinting Control Region (ICR) mice.
Results:
Among the genes encoding 25 integrin subunits, integrin α1, α5, α6, α9, αV, and αE, and integrin β1 and β5 had significantly higher transcriptional levels than the other subunits. Furthermore, at the translational level, integrin α5, α6, α9, αV, and αE, and β1 were localized on the surface of SSCs, but integrin α1 and β5 not. Moreover, significantly stronger translational expression than integrin α9 and αE was observed in integrin α5, α6, αV, and β1. SSCs showed significantly increased adhesion to fibronectin, laminin, tenascin C and vitronectin, and functional blocking of integrin α5β1, α6β1, α9β1 or αVβ1 significantly inhibited adhesion to these molecules.
Conclusions
We confirmed that integrin α5β1, α6β1, α9β1 and αVβ1 actively function on the surface of undifferentiated SSCs derived from outbred ICR mice.
6.Various macromolecules in in vitro growth medium influence growth, maturation, and parthenogenetic development of pig oocytes derived from small antral follicles
Hanna LEE ; Yongjin LEE ; Joohyeong LEE ; Geun Shik LEE ; Seung Tae LEE ; Eunsong LEE
Korean Journal of Veterinary Research 2019;59(2):81-88
This study was performed to examine the effects of various macromolecules in in vitro growth (IVG) media on the growth, maturation, and parthenogenesis (PA) of pig oocytes derived from small antral follicles (SAF). Immature oocytes were cultured for two days in IVG medium supplemented with 10% (v/v) fetal bovine serum (FBS), 10% (v/v) pig follicular fluid (PFF), 0.4% (w/v) bovine serum albumin (BSA), or 0.1% (w/v) polyvinyl alcohol (PVA) and then maintained for 44 h for maturation. After IVG, the mean diameters of the SAF treated with FBS, PVA, and no IVG-MAF (113.0–114.8 µm) were significantly larger than that of no IVG-SAF (111.8 µm). The proportion of metaphase II oocytes was higher in PFF (73.6%) than in BSA (43.5%) and PVA (53.7%) but similar to that in the FBS treatment (61.5%). FBS and PFF increased cumulus expansion significantly compared to PVA and BSA while the intraoocyte glutathione content was not influenced by the macromolecules. Blastocyst formation of PA oocytes treated with FBS (51.8%), PFF (50.4%), and PVA (45.2%) was significantly higher than that of the BSA-treated oocytes (20.6%). These results show that the PFF and FBS treatments during IVG improved the growth, maturation, and embryonic development of SAF.
Blastocyst
;
Embryonic Development
;
Female
;
Follicular Fluid
;
Glutathione
;
In Vitro Techniques
;
Metaphase
;
Oocytes
;
Parthenogenesis
;
Polyvinyl Alcohol
;
Pregnancy
;
Serum Albumin, Bovine
7.Various macromolecules in in vitro growth medium influence growth, maturation, and parthenogenetic development of pig oocytes derived from small antral follicles
Hanna LEE ; Yongjin LEE ; Joohyeong LEE ; Geun Shik LEE ; Seung Tae LEE ; Eunsong LEE
Korean Journal of Veterinary Research 2019;59(2):81-88
This study was performed to examine the effects of various macromolecules in in vitro growth (IVG) media on the growth, maturation, and parthenogenesis (PA) of pig oocytes derived from small antral follicles (SAF). Immature oocytes were cultured for two days in IVG medium supplemented with 10% (v/v) fetal bovine serum (FBS), 10% (v/v) pig follicular fluid (PFF), 0.4% (w/v) bovine serum albumin (BSA), or 0.1% (w/v) polyvinyl alcohol (PVA) and then maintained for 44 h for maturation. After IVG, the mean diameters of the SAF treated with FBS, PVA, and no IVG-MAF (113.0–114.8 µm) were significantly larger than that of no IVG-SAF (111.8 µm). The proportion of metaphase II oocytes was higher in PFF (73.6%) than in BSA (43.5%) and PVA (53.7%) but similar to that in the FBS treatment (61.5%). FBS and PFF increased cumulus expansion significantly compared to PVA and BSA while the intraoocyte glutathione content was not influenced by the macromolecules. Blastocyst formation of PA oocytes treated with FBS (51.8%), PFF (50.4%), and PVA (45.2%) was significantly higher than that of the BSA-treated oocytes (20.6%). These results show that the PFF and FBS treatments during IVG improved the growth, maturation, and embryonic development of SAF.
8.Oocyte maturation under a biophoton generator improves preimplantation development of pig embryos derived by parthenogenesis and somatic cell nuclear transfer.
Joohyeong LEE ; Hyeji SHIN ; Wonyou LEE ; Seung Tae LEE ; Geun Shik LEE ; Sang Hwan HYUN ; Eunsong LEE
Korean Journal of Veterinary Research 2017;57(2):89-95
This study was conducted to determine the effects of biophoton treatment during in vitro maturation (IVM) and/or in vitro culture (IVC) on oocyte maturation and embryonic development in pigs. An apparatus capable of generating homogeneous biophoton energy emissions was placed in an incubator. Initially, immature pig oocytes were matured in the biophoton-equipped incubator in medium 199 supplemented with cysteine, epidermal growth factor, insulin, and gonadotrophic hormones for 22 h, after which they were matured in hormone-free medium for an additional 22 hr. Next, IVM oocytes were induced for parthenogenesis (PA) or provided as cytoplasts for somatic cell nuclear transfer (SCNT). Treatment of oocytes with biophoton energy during IVM did not improve cumulus cell expansion, nuclear maturation, intraoocyte glutathione content, or mitochondrial distribution of oocytes. However, biophoton-treated oocytes showed higher (p < 0.05) blastocyst formation after PA than that in untreated oocytes (50.7% vs. 42.7%). In an additional experiment, SCNT embryos produced from biophoton-treated oocytes showed a greater (p < 0.05) number of cells in blastocysts (52.6 vs. 43.9) than that in untreated oocytes. Taken together, our results demonstrate that biophoton treatment during IVM improves developmental competence of PA- and SCNT-derived embryos.
Blastocyst
;
Cumulus Cells
;
Cysteine
;
Embryonic Development
;
Embryonic Structures*
;
Epidermal Growth Factor
;
Female
;
Glutathione
;
Gonadotrophs
;
In Vitro Techniques
;
Incubators
;
Insulin
;
Mental Competency
;
Oocytes*
;
Parthenogenesis*
;
Pregnancy
;
Swine
9.Rapamycin treatment during in vitro maturation of oocytes improves embryonic development after parthenogenesis and somatic cell nuclear transfer in pigs.
Joohyeong LEE ; Jong Im PARK ; Jung Im YUN ; Yongjin LEE ; Hwanyul YONG ; Seung Tae LEE ; Choon Keun PARK ; Sang Hwan HYUN ; Geun Shik LEE ; Eunsong LEE
Journal of Veterinary Science 2015;16(3):373-380
This study was conducted to investigate the effects of rapamycin treatment during in vitro maturation (IVM) on oocyte maturation and embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) in pigs. Morphologically good (MGCOCs) and poor oocytes (MPCOCs) were untreated or treated with 1 nM rapamycin during 0-22 h, 22-42 h, or 0-42 h of IVM. Rapamycin had no significant effects on nuclear maturation and blastocyst formation after PA of MGCOCs. Blastocyst formation after PA was significantly increased by rapamycin treatment during 22-42 h and 0-42 h (46.6% and 46.5%, respectively) relative to the control (33.3%) and 0-22 h groups (38.6%) in MPCOCs. In SCNT, blastocyst formation tended to increase in MPCOCs treated with rapamycin during 0-42 h of IVM relative to untreated oocytes (20.3% vs. 14.3%, 0.05 < p < 0.1), while no improvement was observed in MGCOCs. Gene expression analysis revealed that transcript abundance of Beclin 1 and microtubule-associated protein 1 light chain 3 mRNAs was significantly increased in MPCOCs by rapamycin relative to the control. Our results demonstrated that autophagy induction by rapamycin during IVM improved developmental competence of oocytes derived from MPCOCs.
Animals
;
Embryonic Development/*drug effects
;
Female
;
In Vitro Oocyte Maturation Techniques/veterinary
;
Nuclear Transfer Techniques/*veterinary
;
Oocytes/growth & development
;
*Parthenogenesis
;
Sirolimus/*pharmacology
;
Sus scrofa/*growth & development/metabolism
10.Use of a domestic Korean black goat (Capra hircus coreanae) with its chest crayon-harnessed in detecting estrus of Himalayan tahrs (Hemitragus jemlahicus).
Journal of Veterinary Science 2014;15(3):427-432
The reliability of a Korean black goat (Capra hircus coreanae) to detect estrus in Himalayan tahrs (Hemitragus jemlahicus) for an artificial breeding program was investigated. Estrus in six female Himalayan tahrs was synchronized using fluorogestone acetate (FGA) sponges. Thirteen days later, 200 IU of PMSG and 100 IU of hCG were injected before removing the sponges and simultaneously injecting 5 mg of PGF2alpha the next day. Penetration of the cervical canal and the thickness and location of red crayon marks were examined 40~43 h later. Two females treated with sponges containing 60 or 45 mg of FGA had estrogen levels of 8.7 and 11.1 pg/mL, respectively. No red marks were found on the backs of these two tahrs. The remaining females had higher levels of estradiol, and the red crayon marks were clearly shown. The cervical folds of these tahrs were readily penetrated and the insemination gun was smoothly inserted into the uterine body. In conclusion, a Korean domestic goat with its chest crayon-harnessed was successfully used to detect estrus of Himalayan tahrs. This technique might be utilized as a part of breeding programs for wild goats and avoid the need for a vasectomy of conspecific males.
Animals
;
Breeding/methods
;
Estradiol/blood
;
Estrus/physiology
;
Estrus Detection/*methods
;
Estrus Synchronization/methods
;
Female
;
Goats/*physiology
;
Male
;
Progesterone/blood

Result Analysis
Print
Save
E-mail