1.Improving breast ultrasonography education: the impact of AI-based decision support on the performance of non-specialist medical professionals
Sangwon LEE ; Hye Sun LEE ; Eunju LEE ; Won Hwa KIM ; Jaeil KIM ; Jung Hyun YOON
Ultrasonography 2025;44(2):124-133
Purpose:
This study evaluated the educational impact of an artificial intelligence (AI)–based decision support system for breast ultrasonography (US) on medical professionals not specialized in breast imaging.
Methods:
In this multi-case, multi-reader study, educational materials, including American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) descriptors, were provided alongside corresponding AI results during training. The AI system presented results in the form of AIheatmaps, AI scores, and AI-provided BI-RADS assessment categories. Forty-two readers evaluated the test set in three sessions: the first session (S1) occurred before the educational intervention, the second session (S2) followed education without AI assistance, and the third session (S3) took place after education with AI assistance. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and overall performance, were compared between the sessions.
Results:
The mean sensitivity increased from 66.5% (95% confidence interval [CI], 59.2% to 73.7%) to 88.7% (95% CI, 84.1% to 93.3%), with a statistically significant difference (P<0.001), and the AUC non-significantly increased from 0.664 (95% CI, 0.606 to 0.723) to 0.684 (95% CI, 0.620 to 0.748) (P=0.300). Both measures were higher in S2 than in S1. The AI-achieved AUC was comparable to that of the expert reader (0.747 [95% CI, 0.640 to 0.855] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.217). Additionally, with AI assistance, the mean AUC for inexperienced readers was not significantly different from that of the expert reader (0.745 [95% CI, 0.660 to 0.830] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.120).
Conclusion
The mean AUC and sensitivity improved after incorporating AI into breast US education and interpretation. AI systems with high-level performance for breast US can potentially be used as educational tools in the interpretation of breast US images.
2.Resveratrol from Peanut Sprout Extract Promotes NK Cell Activation and Antitumor Activity
Hyunmin CHUNG ; Seong Ho BAK ; Eunju SHIN ; Taeho PARK ; Jinwoo KIM ; Hanseul JEONG ; Haiyoung JUNG ; Suk Ran YOON ; Ji-Yoon NOH
Biomolecules & Therapeutics 2025;33(2):355-364
Natural killer (NK) cells are innate immune cells that are crucial for anticancer activity and have been developed as an immune cell therapy for leukemia. However, their limited effectiveness against solid tumors has prompted research into methods to enhance NK cell activity through combination therapies. Health supplements capable of boosting immune surveillance against tumor cells are gaining attention owing to their potential benefits. Resveratrol, a stilbenoid produced by several plants including peanuts and grapes, reportedly exerts anticancer effects and can activate immune cells. The peanut sprout extract cultivated with fermented sawdust medium (PSEFS) is rich in resveratrol, leveraging its health benefits in terms of the dry weight of herbal products, thus maximizing the utilization of resveratrol’s beneficial properties. Our study compared the efficacy of resveratrol and PSEFS and revealed that PSEFS significantly enhanced NK cell activation compared with an equivalent dose of resveratrol. We investigated the ability of PSEFS to potentiate NK cell anticancer activity, focusing on NK cell survival, tumor cell lysis, and NK cell activation in PSEFS-administered mice. Our findings suggest that PSEFS could be a potential NK cell booster for cancer immunotherapy.
3.Improving breast ultrasonography education: the impact of AI-based decision support on the performance of non-specialist medical professionals
Sangwon LEE ; Hye Sun LEE ; Eunju LEE ; Won Hwa KIM ; Jaeil KIM ; Jung Hyun YOON
Ultrasonography 2025;44(2):124-133
Purpose:
This study evaluated the educational impact of an artificial intelligence (AI)–based decision support system for breast ultrasonography (US) on medical professionals not specialized in breast imaging.
Methods:
In this multi-case, multi-reader study, educational materials, including American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) descriptors, were provided alongside corresponding AI results during training. The AI system presented results in the form of AIheatmaps, AI scores, and AI-provided BI-RADS assessment categories. Forty-two readers evaluated the test set in three sessions: the first session (S1) occurred before the educational intervention, the second session (S2) followed education without AI assistance, and the third session (S3) took place after education with AI assistance. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and overall performance, were compared between the sessions.
Results:
The mean sensitivity increased from 66.5% (95% confidence interval [CI], 59.2% to 73.7%) to 88.7% (95% CI, 84.1% to 93.3%), with a statistically significant difference (P<0.001), and the AUC non-significantly increased from 0.664 (95% CI, 0.606 to 0.723) to 0.684 (95% CI, 0.620 to 0.748) (P=0.300). Both measures were higher in S2 than in S1. The AI-achieved AUC was comparable to that of the expert reader (0.747 [95% CI, 0.640 to 0.855] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.217). Additionally, with AI assistance, the mean AUC for inexperienced readers was not significantly different from that of the expert reader (0.745 [95% CI, 0.660 to 0.830] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.120).
Conclusion
The mean AUC and sensitivity improved after incorporating AI into breast US education and interpretation. AI systems with high-level performance for breast US can potentially be used as educational tools in the interpretation of breast US images.
4.Improving breast ultrasonography education: the impact of AI-based decision support on the performance of non-specialist medical professionals
Sangwon LEE ; Hye Sun LEE ; Eunju LEE ; Won Hwa KIM ; Jaeil KIM ; Jung Hyun YOON
Ultrasonography 2025;44(2):124-133
Purpose:
This study evaluated the educational impact of an artificial intelligence (AI)–based decision support system for breast ultrasonography (US) on medical professionals not specialized in breast imaging.
Methods:
In this multi-case, multi-reader study, educational materials, including American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) descriptors, were provided alongside corresponding AI results during training. The AI system presented results in the form of AIheatmaps, AI scores, and AI-provided BI-RADS assessment categories. Forty-two readers evaluated the test set in three sessions: the first session (S1) occurred before the educational intervention, the second session (S2) followed education without AI assistance, and the third session (S3) took place after education with AI assistance. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and overall performance, were compared between the sessions.
Results:
The mean sensitivity increased from 66.5% (95% confidence interval [CI], 59.2% to 73.7%) to 88.7% (95% CI, 84.1% to 93.3%), with a statistically significant difference (P<0.001), and the AUC non-significantly increased from 0.664 (95% CI, 0.606 to 0.723) to 0.684 (95% CI, 0.620 to 0.748) (P=0.300). Both measures were higher in S2 than in S1. The AI-achieved AUC was comparable to that of the expert reader (0.747 [95% CI, 0.640 to 0.855] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.217). Additionally, with AI assistance, the mean AUC for inexperienced readers was not significantly different from that of the expert reader (0.745 [95% CI, 0.660 to 0.830] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.120).
Conclusion
The mean AUC and sensitivity improved after incorporating AI into breast US education and interpretation. AI systems with high-level performance for breast US can potentially be used as educational tools in the interpretation of breast US images.
5.Erratum: Korean Gastric Cancer Association-Led Nationwide Survey on Surgically Treated Gastric Cancers in 2023
Dong Jin KIM ; Jeong Ho SONG ; Ji-Hyeon PARK ; Sojung KIM ; Sin Hye PARK ; Cheol Min SHIN ; Yoonjin KWAK ; Kyunghye BANG ; Chung-sik GONG ; Sung Eun OH ; Yoo Min KIM ; Young Suk PARK ; Jeesun KIM ; Ji Eun JUNG ; Mi Ran JUNG ; Bang Wool EOM ; Ki Bum PARK ; Jae Hun CHUNG ; Sang-Il LEE ; Young-Gil SON ; Dae Hoon KIM ; Sang Hyuk SEO ; Sejin LEE ; Won Jun SEO ; Dong Jin PARK ; Yoonhong KIM ; Jin-Jo KIM ; Ki Bum PARK ; In CHO ; Hye Seong AHN ; Sung Jin OH ; Ju-Hee LEE ; Hayemin LEE ; Seong Chan GONG ; Changin CHOI ; Ji-Ho PARK ; Eun Young KIM ; Chang Min LEE ; Jong Hyuk YUN ; Seung Jong OH ; Eunju LEE ; Seong-A JEONG ; Jung-Min BAE ; Jae-Seok MIN ; Hyun-dong CHAE ; Sung Gon KIM ; Daegeun PARK ; Dong Baek KANG ; Hogoon KIM ; Seung Soo LEE ; Sung Il CHOI ; Seong Ho HWANG ; Su-Mi KIM ; Moon Soo LEE ; Sang Hyun KIM ; Sang-Ho JEONG ; Yusung YANG ; Yonghae BAIK ; Sang Soo EOM ; Inho JEONG ; Yoon Ju JUNG ; Jong-Min PARK ; Jin Won LEE ; Jungjai PARK ; Ki Han KIM ; Kyung-Goo LEE ; Jeongyeon LEE ; Seongil OH ; Ji Hun PARK ; Jong Won KIM ;
Journal of Gastric Cancer 2025;25(2):400-402
6.Korean Gastric Cancer AssociationLed Nationwide Survey on Surgically Treated Gastric Cancers in 2023
Dong Jin KIM ; Jeong Ho SONG ; Ji-Hyeon PARK ; Sojung KIM ; Sin Hye PARK ; Cheol Min SHIN ; Yoonjin KWAK ; Kyunghye BANG ; Chung-sik GONG ; Sung Eun OH ; Yoo Min KIM ; Young Suk PARK ; Jeesun KIM ; Ji Eun JUNG ; Mi Ran JUNG ; Bang Wool EOM ; Ki Bum PARK ; Jae Hun CHUNG ; Sang-Il LEE ; Young-Gil SON ; Dae Hoon KIM ; Sang Hyuk SEO ; Sejin LEE ; Won Jun SEO ; Dong Jin PARK ; Yoonhong KIM ; Jin-Jo KIM ; Ki Bum PARK ; In CHO ; Hye Seong AHN ; Sung Jin OH ; Ju-Hee LEE ; Hayemin LEE ; Seong Chan GONG ; Changin CHOI ; Ji-Ho PARK ; Eun Young KIM ; Chang Min LEE ; Jong Hyuk YUN ; Seung Jong OH ; Eunju LEE ; Seong-A JEONG ; Jung-Min BAE ; Jae-Seok MIN ; Hyun-dong CHAE ; Sung Gon KIM ; Daegeun PARK ; Dong Baek KANG ; Hogoon KIM ; Seung Soo LEE ; Sung Il CHOI ; Seong Ho HWANG ; Su-Mi KIM ; Moon Soo LEE ; Sang Hyun KIM ; Sang-Ho JEONG ; Yusung YANG ; Yonghae BAIK ; Sang Soo EOM ; Inho JEONG ; Yoon Ju JUNG ; Jong-Min PARK ; Jin Won LEE ; Jungjai PARK ; Ki Han KIM ; Kyung-Goo LEE ; Jeongyeon LEE ; Seongil OH ; Ji Hun PARK ; Jong Won KIM ; The Information Committee of the Korean Gastric Cancer Association
Journal of Gastric Cancer 2025;25(1):115-132
Purpose:
Since 1995, the Korean Gastric Cancer Association (KGCA) has been periodically conducting nationwide surveys on patients with surgically treated gastric cancer. This study details the results of the survey conducted in 2023.
Materials and Methods:
The survey was conducted from March to December 2024 using a standardized case report form. Data were collected on 86 items, including patient demographics, tumor characteristics, surgical procedures, and surgical outcomes. The results of the 2023 survey were compared with those of previous surveys.
Results:
Data from 12,751 cases were collected from 66 institutions. The mean patient age was 64.6 years, and the proportion of patients aged ≥71 years increased from 9.1% in 1995 to 31.7% in 2023. The proportion of upper-third tumors slightly decreased to 16.8% compared to 20.9% in 2019. Early gastric cancer accounted for 63.1% of cases in 2023.Regarding operative procedures, a totally laparoscopic approach was most frequently applied (63.2%) in 2023, while robotic gastrectomy steadily increased to 9.5% from 2.1% in 2014.The most common anastomotic method was the Billroth II procedure (48.8%) after distal gastrectomy and double-tract reconstruction (51.9%) after proximal gastrectomy in 2023.However, the proportion of esophago-gastrostomy with anti-reflux procedures increased to 30.9%. The rates of post-operative mortality and overall complications were 1.0% and 15.3%, respectively.
Conclusions
The results of the 2023 nationwide survey demonstrate the current status of gastric cancer treatment in Korea. This information will provide a basis for future gastric cancer research.
7.Resveratrol from Peanut Sprout Extract Promotes NK Cell Activation and Antitumor Activity
Hyunmin CHUNG ; Seong Ho BAK ; Eunju SHIN ; Taeho PARK ; Jinwoo KIM ; Hanseul JEONG ; Haiyoung JUNG ; Suk Ran YOON ; Ji-Yoon NOH
Biomolecules & Therapeutics 2025;33(2):355-364
Natural killer (NK) cells are innate immune cells that are crucial for anticancer activity and have been developed as an immune cell therapy for leukemia. However, their limited effectiveness against solid tumors has prompted research into methods to enhance NK cell activity through combination therapies. Health supplements capable of boosting immune surveillance against tumor cells are gaining attention owing to their potential benefits. Resveratrol, a stilbenoid produced by several plants including peanuts and grapes, reportedly exerts anticancer effects and can activate immune cells. The peanut sprout extract cultivated with fermented sawdust medium (PSEFS) is rich in resveratrol, leveraging its health benefits in terms of the dry weight of herbal products, thus maximizing the utilization of resveratrol’s beneficial properties. Our study compared the efficacy of resveratrol and PSEFS and revealed that PSEFS significantly enhanced NK cell activation compared with an equivalent dose of resveratrol. We investigated the ability of PSEFS to potentiate NK cell anticancer activity, focusing on NK cell survival, tumor cell lysis, and NK cell activation in PSEFS-administered mice. Our findings suggest that PSEFS could be a potential NK cell booster for cancer immunotherapy.
8.Erratum: Korean Gastric Cancer Association-Led Nationwide Survey on Surgically Treated Gastric Cancers in 2023
Dong Jin KIM ; Jeong Ho SONG ; Ji-Hyeon PARK ; Sojung KIM ; Sin Hye PARK ; Cheol Min SHIN ; Yoonjin KWAK ; Kyunghye BANG ; Chung-sik GONG ; Sung Eun OH ; Yoo Min KIM ; Young Suk PARK ; Jeesun KIM ; Ji Eun JUNG ; Mi Ran JUNG ; Bang Wool EOM ; Ki Bum PARK ; Jae Hun CHUNG ; Sang-Il LEE ; Young-Gil SON ; Dae Hoon KIM ; Sang Hyuk SEO ; Sejin LEE ; Won Jun SEO ; Dong Jin PARK ; Yoonhong KIM ; Jin-Jo KIM ; Ki Bum PARK ; In CHO ; Hye Seong AHN ; Sung Jin OH ; Ju-Hee LEE ; Hayemin LEE ; Seong Chan GONG ; Changin CHOI ; Ji-Ho PARK ; Eun Young KIM ; Chang Min LEE ; Jong Hyuk YUN ; Seung Jong OH ; Eunju LEE ; Seong-A JEONG ; Jung-Min BAE ; Jae-Seok MIN ; Hyun-dong CHAE ; Sung Gon KIM ; Daegeun PARK ; Dong Baek KANG ; Hogoon KIM ; Seung Soo LEE ; Sung Il CHOI ; Seong Ho HWANG ; Su-Mi KIM ; Moon Soo LEE ; Sang Hyun KIM ; Sang-Ho JEONG ; Yusung YANG ; Yonghae BAIK ; Sang Soo EOM ; Inho JEONG ; Yoon Ju JUNG ; Jong-Min PARK ; Jin Won LEE ; Jungjai PARK ; Ki Han KIM ; Kyung-Goo LEE ; Jeongyeon LEE ; Seongil OH ; Ji Hun PARK ; Jong Won KIM ;
Journal of Gastric Cancer 2025;25(2):400-402
9.Korean Gastric Cancer AssociationLed Nationwide Survey on Surgically Treated Gastric Cancers in 2023
Dong Jin KIM ; Jeong Ho SONG ; Ji-Hyeon PARK ; Sojung KIM ; Sin Hye PARK ; Cheol Min SHIN ; Yoonjin KWAK ; Kyunghye BANG ; Chung-sik GONG ; Sung Eun OH ; Yoo Min KIM ; Young Suk PARK ; Jeesun KIM ; Ji Eun JUNG ; Mi Ran JUNG ; Bang Wool EOM ; Ki Bum PARK ; Jae Hun CHUNG ; Sang-Il LEE ; Young-Gil SON ; Dae Hoon KIM ; Sang Hyuk SEO ; Sejin LEE ; Won Jun SEO ; Dong Jin PARK ; Yoonhong KIM ; Jin-Jo KIM ; Ki Bum PARK ; In CHO ; Hye Seong AHN ; Sung Jin OH ; Ju-Hee LEE ; Hayemin LEE ; Seong Chan GONG ; Changin CHOI ; Ji-Ho PARK ; Eun Young KIM ; Chang Min LEE ; Jong Hyuk YUN ; Seung Jong OH ; Eunju LEE ; Seong-A JEONG ; Jung-Min BAE ; Jae-Seok MIN ; Hyun-dong CHAE ; Sung Gon KIM ; Daegeun PARK ; Dong Baek KANG ; Hogoon KIM ; Seung Soo LEE ; Sung Il CHOI ; Seong Ho HWANG ; Su-Mi KIM ; Moon Soo LEE ; Sang Hyun KIM ; Sang-Ho JEONG ; Yusung YANG ; Yonghae BAIK ; Sang Soo EOM ; Inho JEONG ; Yoon Ju JUNG ; Jong-Min PARK ; Jin Won LEE ; Jungjai PARK ; Ki Han KIM ; Kyung-Goo LEE ; Jeongyeon LEE ; Seongil OH ; Ji Hun PARK ; Jong Won KIM ; The Information Committee of the Korean Gastric Cancer Association
Journal of Gastric Cancer 2025;25(1):115-132
Purpose:
Since 1995, the Korean Gastric Cancer Association (KGCA) has been periodically conducting nationwide surveys on patients with surgically treated gastric cancer. This study details the results of the survey conducted in 2023.
Materials and Methods:
The survey was conducted from March to December 2024 using a standardized case report form. Data were collected on 86 items, including patient demographics, tumor characteristics, surgical procedures, and surgical outcomes. The results of the 2023 survey were compared with those of previous surveys.
Results:
Data from 12,751 cases were collected from 66 institutions. The mean patient age was 64.6 years, and the proportion of patients aged ≥71 years increased from 9.1% in 1995 to 31.7% in 2023. The proportion of upper-third tumors slightly decreased to 16.8% compared to 20.9% in 2019. Early gastric cancer accounted for 63.1% of cases in 2023.Regarding operative procedures, a totally laparoscopic approach was most frequently applied (63.2%) in 2023, while robotic gastrectomy steadily increased to 9.5% from 2.1% in 2014.The most common anastomotic method was the Billroth II procedure (48.8%) after distal gastrectomy and double-tract reconstruction (51.9%) after proximal gastrectomy in 2023.However, the proportion of esophago-gastrostomy with anti-reflux procedures increased to 30.9%. The rates of post-operative mortality and overall complications were 1.0% and 15.3%, respectively.
Conclusions
The results of the 2023 nationwide survey demonstrate the current status of gastric cancer treatment in Korea. This information will provide a basis for future gastric cancer research.
10.Improving breast ultrasonography education: the impact of AI-based decision support on the performance of non-specialist medical professionals
Sangwon LEE ; Hye Sun LEE ; Eunju LEE ; Won Hwa KIM ; Jaeil KIM ; Jung Hyun YOON
Ultrasonography 2025;44(2):124-133
Purpose:
This study evaluated the educational impact of an artificial intelligence (AI)–based decision support system for breast ultrasonography (US) on medical professionals not specialized in breast imaging.
Methods:
In this multi-case, multi-reader study, educational materials, including American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) descriptors, were provided alongside corresponding AI results during training. The AI system presented results in the form of AIheatmaps, AI scores, and AI-provided BI-RADS assessment categories. Forty-two readers evaluated the test set in three sessions: the first session (S1) occurred before the educational intervention, the second session (S2) followed education without AI assistance, and the third session (S3) took place after education with AI assistance. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and overall performance, were compared between the sessions.
Results:
The mean sensitivity increased from 66.5% (95% confidence interval [CI], 59.2% to 73.7%) to 88.7% (95% CI, 84.1% to 93.3%), with a statistically significant difference (P<0.001), and the AUC non-significantly increased from 0.664 (95% CI, 0.606 to 0.723) to 0.684 (95% CI, 0.620 to 0.748) (P=0.300). Both measures were higher in S2 than in S1. The AI-achieved AUC was comparable to that of the expert reader (0.747 [95% CI, 0.640 to 0.855] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.217). Additionally, with AI assistance, the mean AUC for inexperienced readers was not significantly different from that of the expert reader (0.745 [95% CI, 0.660 to 0.830] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.120).
Conclusion
The mean AUC and sensitivity improved after incorporating AI into breast US education and interpretation. AI systems with high-level performance for breast US can potentially be used as educational tools in the interpretation of breast US images.

Result Analysis
Print
Save
E-mail