1.Relationship between periodontitis and systemic health conditions: a narrative review
Min-Young KIM ; Eun-Kyoung PANG
The Ewha Medical Journal 2025;48(2):e27-
This review examines the bidirectional relationship between periodontitis and systemic health conditions, offering an integrated perspective based on current evidence. It synthesizes epidemiological data, biological mechanisms, and clinical implications to support collaborative care strategies recognizing oral health as a key component of overall wellness. Periodontitis affects 7.4% to 11.2% of adults worldwide, and its prevalence increases with age. Beyond its local effects, including gingival inflammation, periodontal pocket formation, and alveolar bone loss, periodontitis is associated with various systemic conditions. Emerging evidence has established links with obesity, diabetes mellitus, cardiovascular disease, chronic kidney disease, inflammatory bowel disease, rheumatoid arthritis, respiratory diseases, adverse pregnancy outcomes, certain malignancies, neurodegenerative diseases, psychological disorders, and autoimmune conditions. These associations are mediated by 3 primary mechanisms: dysbiotic oral biofilms, chronic low-grade systemic inflammation, and the dissemination of periodontal pathogens throughout the body. The pathophysiology involves elevated levels of pro-inflammatory cytokines (including interleukin 6, tumor necrosis factor alpha, and C-reactive protein), impaired immune function, oxidative stress, and molecular mimicry. Periodontal pathogens, particularly Porphyromonas gingivalis, are crucial in initiating and sustaining systemic inflammatory responses. Treatment of periodontitis has demonstrated measurable improvements in numerous systemic conditions, emphasizing the clinical significance of these interconnections. Periodontitis should be understood as more than just a localized oral disease; it significantly contributes to the overall systemic inflammatory burden, with implications for general health. An integrated, multidisciplinary approach to prevention, early detection, and comprehensive treatment is vital for optimal patient outcomes. Healthcare providers should acknowledge oral health as an essential element of systemic well-being.
2.Relationship between periodontitis and systemic health conditions: a narrative review
Min-Young KIM ; Eun-Kyoung PANG
The Ewha Medical Journal 2025;48(2):e27-
This review examines the bidirectional relationship between periodontitis and systemic health conditions, offering an integrated perspective based on current evidence. It synthesizes epidemiological data, biological mechanisms, and clinical implications to support collaborative care strategies recognizing oral health as a key component of overall wellness. Periodontitis affects 7.4% to 11.2% of adults worldwide, and its prevalence increases with age. Beyond its local effects, including gingival inflammation, periodontal pocket formation, and alveolar bone loss, periodontitis is associated with various systemic conditions. Emerging evidence has established links with obesity, diabetes mellitus, cardiovascular disease, chronic kidney disease, inflammatory bowel disease, rheumatoid arthritis, respiratory diseases, adverse pregnancy outcomes, certain malignancies, neurodegenerative diseases, psychological disorders, and autoimmune conditions. These associations are mediated by 3 primary mechanisms: dysbiotic oral biofilms, chronic low-grade systemic inflammation, and the dissemination of periodontal pathogens throughout the body. The pathophysiology involves elevated levels of pro-inflammatory cytokines (including interleukin 6, tumor necrosis factor alpha, and C-reactive protein), impaired immune function, oxidative stress, and molecular mimicry. Periodontal pathogens, particularly Porphyromonas gingivalis, are crucial in initiating and sustaining systemic inflammatory responses. Treatment of periodontitis has demonstrated measurable improvements in numerous systemic conditions, emphasizing the clinical significance of these interconnections. Periodontitis should be understood as more than just a localized oral disease; it significantly contributes to the overall systemic inflammatory burden, with implications for general health. An integrated, multidisciplinary approach to prevention, early detection, and comprehensive treatment is vital for optimal patient outcomes. Healthcare providers should acknowledge oral health as an essential element of systemic well-being.
3.Relationship between periodontitis and systemic health conditions: a narrative review
Min-Young KIM ; Eun-Kyoung PANG
The Ewha Medical Journal 2025;48(2):e27-
This review examines the bidirectional relationship between periodontitis and systemic health conditions, offering an integrated perspective based on current evidence. It synthesizes epidemiological data, biological mechanisms, and clinical implications to support collaborative care strategies recognizing oral health as a key component of overall wellness. Periodontitis affects 7.4% to 11.2% of adults worldwide, and its prevalence increases with age. Beyond its local effects, including gingival inflammation, periodontal pocket formation, and alveolar bone loss, periodontitis is associated with various systemic conditions. Emerging evidence has established links with obesity, diabetes mellitus, cardiovascular disease, chronic kidney disease, inflammatory bowel disease, rheumatoid arthritis, respiratory diseases, adverse pregnancy outcomes, certain malignancies, neurodegenerative diseases, psychological disorders, and autoimmune conditions. These associations are mediated by 3 primary mechanisms: dysbiotic oral biofilms, chronic low-grade systemic inflammation, and the dissemination of periodontal pathogens throughout the body. The pathophysiology involves elevated levels of pro-inflammatory cytokines (including interleukin 6, tumor necrosis factor alpha, and C-reactive protein), impaired immune function, oxidative stress, and molecular mimicry. Periodontal pathogens, particularly Porphyromonas gingivalis, are crucial in initiating and sustaining systemic inflammatory responses. Treatment of periodontitis has demonstrated measurable improvements in numerous systemic conditions, emphasizing the clinical significance of these interconnections. Periodontitis should be understood as more than just a localized oral disease; it significantly contributes to the overall systemic inflammatory burden, with implications for general health. An integrated, multidisciplinary approach to prevention, early detection, and comprehensive treatment is vital for optimal patient outcomes. Healthcare providers should acknowledge oral health as an essential element of systemic well-being.
4.Relationship between periodontitis and systemic health conditions: a narrative review
Min-Young KIM ; Eun-Kyoung PANG
The Ewha Medical Journal 2025;48(2):e27-
This review examines the bidirectional relationship between periodontitis and systemic health conditions, offering an integrated perspective based on current evidence. It synthesizes epidemiological data, biological mechanisms, and clinical implications to support collaborative care strategies recognizing oral health as a key component of overall wellness. Periodontitis affects 7.4% to 11.2% of adults worldwide, and its prevalence increases with age. Beyond its local effects, including gingival inflammation, periodontal pocket formation, and alveolar bone loss, periodontitis is associated with various systemic conditions. Emerging evidence has established links with obesity, diabetes mellitus, cardiovascular disease, chronic kidney disease, inflammatory bowel disease, rheumatoid arthritis, respiratory diseases, adverse pregnancy outcomes, certain malignancies, neurodegenerative diseases, psychological disorders, and autoimmune conditions. These associations are mediated by 3 primary mechanisms: dysbiotic oral biofilms, chronic low-grade systemic inflammation, and the dissemination of periodontal pathogens throughout the body. The pathophysiology involves elevated levels of pro-inflammatory cytokines (including interleukin 6, tumor necrosis factor alpha, and C-reactive protein), impaired immune function, oxidative stress, and molecular mimicry. Periodontal pathogens, particularly Porphyromonas gingivalis, are crucial in initiating and sustaining systemic inflammatory responses. Treatment of periodontitis has demonstrated measurable improvements in numerous systemic conditions, emphasizing the clinical significance of these interconnections. Periodontitis should be understood as more than just a localized oral disease; it significantly contributes to the overall systemic inflammatory burden, with implications for general health. An integrated, multidisciplinary approach to prevention, early detection, and comprehensive treatment is vital for optimal patient outcomes. Healthcare providers should acknowledge oral health as an essential element of systemic well-being.
5.Relationship between periodontitis and systemic health conditions: a narrative review
Min-Young KIM ; Eun-Kyoung PANG
The Ewha Medical Journal 2025;48(2):e27-
This review examines the bidirectional relationship between periodontitis and systemic health conditions, offering an integrated perspective based on current evidence. It synthesizes epidemiological data, biological mechanisms, and clinical implications to support collaborative care strategies recognizing oral health as a key component of overall wellness. Periodontitis affects 7.4% to 11.2% of adults worldwide, and its prevalence increases with age. Beyond its local effects, including gingival inflammation, periodontal pocket formation, and alveolar bone loss, periodontitis is associated with various systemic conditions. Emerging evidence has established links with obesity, diabetes mellitus, cardiovascular disease, chronic kidney disease, inflammatory bowel disease, rheumatoid arthritis, respiratory diseases, adverse pregnancy outcomes, certain malignancies, neurodegenerative diseases, psychological disorders, and autoimmune conditions. These associations are mediated by 3 primary mechanisms: dysbiotic oral biofilms, chronic low-grade systemic inflammation, and the dissemination of periodontal pathogens throughout the body. The pathophysiology involves elevated levels of pro-inflammatory cytokines (including interleukin 6, tumor necrosis factor alpha, and C-reactive protein), impaired immune function, oxidative stress, and molecular mimicry. Periodontal pathogens, particularly Porphyromonas gingivalis, are crucial in initiating and sustaining systemic inflammatory responses. Treatment of periodontitis has demonstrated measurable improvements in numerous systemic conditions, emphasizing the clinical significance of these interconnections. Periodontitis should be understood as more than just a localized oral disease; it significantly contributes to the overall systemic inflammatory burden, with implications for general health. An integrated, multidisciplinary approach to prevention, early detection, and comprehensive treatment is vital for optimal patient outcomes. Healthcare providers should acknowledge oral health as an essential element of systemic well-being.
6.Periimplant bone change after alveolar ridge preservation: radiographic retrospective study
The Journal of Korean Academy of Prosthodontics 2021;59(3):281-290
Purpose:
The aim of this study is to evaluate bone change around the implant in patients who underwent alveolar ridge preservation for implantation in the posterior teeth using radiographic data measuring changes of mesial, distal crestal bone level according to post-implantation, post-final prosthesis delivery and follow-up periods.
Materials and methods:
In total, 36 implants were placed in 32 patients. The mesial and distal crestal bone level of all the areas where alveolar ridge preservation was performed uses panoramic images taken post-implantation, post-final prosthesis delivery, and follow-up period each was measured and evaluated as a vertical value. The following factors were analyzed: associations between changes of crestal bone level and factors (e.g., age, sex, systemic diseases, dentist, implant location, tooth, bone type, membrane). The statistical analysis was performed using the mean, standard deviation and independent t-test, paired t-test (P < .05).
Results:
Analysis of crestal bone level differences between periods shows statistically significant differences (P < .05). There was no statistically significant difference when the changes of crestal bone level between post-implantation, post-final prosthesis delivery and follow-up periods were correlated with each factors.
Conclusion
After alveolar ridge preservation, bone around the implant remained stable during the maintenance period without being affected by the patient and surgical factors, and alveolar ridge preservation is considered a clinically usable procedure.
7.Periimplant bone change after alveolar ridge preservation: radiographic retrospective study
The Journal of Korean Academy of Prosthodontics 2021;59(3):281-290
Purpose:
The aim of this study is to evaluate bone change around the implant in patients who underwent alveolar ridge preservation for implantation in the posterior teeth using radiographic data measuring changes of mesial, distal crestal bone level according to post-implantation, post-final prosthesis delivery and follow-up periods.
Materials and methods:
In total, 36 implants were placed in 32 patients. The mesial and distal crestal bone level of all the areas where alveolar ridge preservation was performed uses panoramic images taken post-implantation, post-final prosthesis delivery, and follow-up period each was measured and evaluated as a vertical value. The following factors were analyzed: associations between changes of crestal bone level and factors (e.g., age, sex, systemic diseases, dentist, implant location, tooth, bone type, membrane). The statistical analysis was performed using the mean, standard deviation and independent t-test, paired t-test (P < .05).
Results:
Analysis of crestal bone level differences between periods shows statistically significant differences (P < .05). There was no statistically significant difference when the changes of crestal bone level between post-implantation, post-final prosthesis delivery and follow-up periods were correlated with each factors.
Conclusion
After alveolar ridge preservation, bone around the implant remained stable during the maintenance period without being affected by the patient and surgical factors, and alveolar ridge preservation is considered a clinically usable procedure.
8.Correlation analysis of gingival recession after orthodontic treatment in the anterior region: an evaluation of soft and hard tissues
Jong-Bin LEE ; Soo-Jin BAEK ; Minji KIM ; Eun-Kyoung PANG
Journal of Periodontal & Implant Science 2020;50(3):146-158
Purpose:
The aim of this study was to investigate and identify the main causes of periodontal tissue change associated with labial gingival recession by examining the anterior region of patients who underwent orthodontic treatment.
Methods:
In total, 45 patients who had undergone orthodontic treatment from January 2010 to December 2015 were included. Before and after the orthodontic treatment, sectioned images from 3-dimensional digital model scanning and cone-beam computed tomography images in the same region were superimposed to measure periodontal parameters. The initial labial gingival thickness (IGT) and the initial labial alveolar bone thickness (IBT) were measured at 4 mm below the cementoenamel junction (CEJ), and the change of the labial gingival margin was defined as the change of the distance from the CEJ to the gingival margin. Additionally, the jaw, tooth position, tooth inclination, tooth rotation, and history of orthognathic surgery were investigated to determine the various factors that could have affected anterior periodontal tissue changes.
Results:
The mean IGT and IBT were 0.77±0.29 mm and 0.77±0.32 mm, respectively. The mean gingival recession was 0.14±0.57 mm. Tooth inclination had a significant association with gingival recession, and as tooth inclination increased labially, gingival recession increased by approximately 0.2 mm per 1°.
Conclusions
In conclusion, the IGT, IBT, tooth position, tooth rotation, and history of orthognathic surgery did not affect labial gingival recession. However, tooth inclination showed a significant association with labial gingival recession of the anterior teeth after orthodontic treatment.
9.Prevalence and risk factors of peri-implantitis: A retrospective study.
Sae Eun LEE ; Dae Yeob KIM ; Jong Bin LEE ; Eun Kyoung PANG
The Journal of Korean Academy of Prosthodontics 2019;57(1):8-17
PURPOSE: The study analyzed the prevalence of peri-implantitis and factors which may have affected the disease. MATERIALS AND METHODS: This study based on medical records and radiographs of 422 patients (853 implant cases) who visited Ewha Womans University Mokdong Hospital Dental Center from January 1, 2012 to December 31, 2016. Generalized estimation equations (GEE) was utilized to determine the statistical relationship between peri-implantitis and each element, and the cumulative prevalence of peri-implantitis during the observation period was obtained by using the Kaplan Meier Method. RESULTS: The prevalence rate of peri-implantitis at the patient level resulted in 7.3% (31 patients out of a total of 422 patients), and at the implant level 5.5% (47 implants out of a total of 853 implants). Sex, GBR, guided bone regeneration (GBR) and functional loading periods had statistical significance with the occurrence of peri-implantitis. Upon analysis of the cumulative prevalence of peri-implantitis in terms of implant follow-up period, the first case of peri-implantitis occurred at 9 months after the placement of an implant, and the prevalence of peri-implantitis showed a non-linear rise over time without a hint of a critical point. CONCLUSION: The prevalence of peri-implantitis at the patient level and the implant were 7.3% and 5.5%, respectively. Male, implant installed with GBR and longer Functional Loading Periods were related with the risk of peri-implantitis.
Bone Regeneration
;
Female
;
Follow-Up Studies
;
Humans
;
Male
;
Medical Records
;
Methods
;
Peri-Implantitis*
;
Prevalence*
;
Retrospective Studies*
;
Risk Factors*
10.Evaluation of prognosis related to compliance with supportive periodontal treatment in patients with chronic periodontitis: a clinical retrospective study
Jong Bin LEE ; Hye Jung SHIN ; Dae Yeob KIM ; Eun Kyoung PANG
Journal of Periodontal & Implant Science 2019;49(2):76-89
PURPOSE: The purpose of this study was to evaluate the prognostic effect of patient compliance with supportive periodontal treatment (PC-SPT). Chronic periodontitis patients were classified based on their compliance level, and factors affecting PC-SPT and the prognosis of PC-SPT were investigated. METHODS: This study selected 206 patients who started SPT after receiving periodontal treatment between 2010 and 2012. Patients who continued SPT through February 2016 were included. The patients were classified according to whether they exhibited complete compliance (100% of visits), excellent compliance (≥70% of visits), incomplete compliance (<70% of visits), or non-compliance (only 2 visits). Patient characteristics that could affect PC-SPT, such as age, sex, distance of the clinic from their residence, implantation, and periodontal treatment, were investigated. The number of newly decayed and extracted teeth, alveolar bone level changes around the teeth and implants, and implant removal were examined to evaluate the prognosis of PC-SPT. RESULTS: Sex and the presence of an implant significantly affected PC-SPT. Additionally, the number of newly decayed and extracted teeth and changes in alveolar bone levels around the teeth and implants were significant prognostic factors related to PC-SPT. CONCLUSIONS: PC-SPT in chronic periodontitis patients will help maintain periodontal health and prevent further periodontal disease.
Chronic Periodontitis
;
Compliance
;
Humans
;
Patient Compliance
;
Periodontal Diseases
;
Prognosis
;
Retrospective Studies
;
Tooth

Result Analysis
Print
Save
E-mail