1.Microglial galectin-3 increases with aging in the mouse hippocampus
Hyun Joo SHIN ; So Jeong LEE ; Hyeong Seok AN ; Ha Nyeoung CHOI ; Eun Ae JEONG ; Jaewoong LEE ; Kyung Eun KIM ; Bong-Hoi CHOI ; Seung Pil YUN ; Dawon KANG ; Sang Soo KANG ; Gu Seob ROH
The Korean Journal of Physiology and Pharmacology 2025;29(2):215-225
Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood. In the present study, we investigated aging-related mechanisms and microglial galectin-3 expression in the mouse hippocampus using female 6-, 12-, and 24-month-old C57BL/6 mice. Western blot analysis revealed neurodegeneration, blood-brain barrier leakage, and increased levels of neuroinflammation-related proteins in 24-month-old mice compared to 6- and 12-month-old mice. Immunohistochemistry revealed an increase in activated microglia in the hippocampus of 24-month-old mice compared to 6- and 12-month-old mice. Furthermore, we found more galectin-3 and triggering receptor expressed on myeloid cells-2-positive microglia in 24-month-old mice compared to 6- and 12-month-old mice. Using primary mouse microglial cells, galectin -3 was also increased by lipopolysaccharide treatment. These findings suggest that galectin-3 may play an important role in microglial activation and neuroinflammation during brain aging.
2.Microglial galectin-3 increases with aging in the mouse hippocampus
Hyun Joo SHIN ; So Jeong LEE ; Hyeong Seok AN ; Ha Nyeoung CHOI ; Eun Ae JEONG ; Jaewoong LEE ; Kyung Eun KIM ; Bong-Hoi CHOI ; Seung Pil YUN ; Dawon KANG ; Sang Soo KANG ; Gu Seob ROH
The Korean Journal of Physiology and Pharmacology 2025;29(2):215-225
Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood. In the present study, we investigated aging-related mechanisms and microglial galectin-3 expression in the mouse hippocampus using female 6-, 12-, and 24-month-old C57BL/6 mice. Western blot analysis revealed neurodegeneration, blood-brain barrier leakage, and increased levels of neuroinflammation-related proteins in 24-month-old mice compared to 6- and 12-month-old mice. Immunohistochemistry revealed an increase in activated microglia in the hippocampus of 24-month-old mice compared to 6- and 12-month-old mice. Furthermore, we found more galectin-3 and triggering receptor expressed on myeloid cells-2-positive microglia in 24-month-old mice compared to 6- and 12-month-old mice. Using primary mouse microglial cells, galectin -3 was also increased by lipopolysaccharide treatment. These findings suggest that galectin-3 may play an important role in microglial activation and neuroinflammation during brain aging.
3.Microglial galectin-3 increases with aging in the mouse hippocampus
Hyun Joo SHIN ; So Jeong LEE ; Hyeong Seok AN ; Ha Nyeoung CHOI ; Eun Ae JEONG ; Jaewoong LEE ; Kyung Eun KIM ; Bong-Hoi CHOI ; Seung Pil YUN ; Dawon KANG ; Sang Soo KANG ; Gu Seob ROH
The Korean Journal of Physiology and Pharmacology 2025;29(2):215-225
Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood. In the present study, we investigated aging-related mechanisms and microglial galectin-3 expression in the mouse hippocampus using female 6-, 12-, and 24-month-old C57BL/6 mice. Western blot analysis revealed neurodegeneration, blood-brain barrier leakage, and increased levels of neuroinflammation-related proteins in 24-month-old mice compared to 6- and 12-month-old mice. Immunohistochemistry revealed an increase in activated microglia in the hippocampus of 24-month-old mice compared to 6- and 12-month-old mice. Furthermore, we found more galectin-3 and triggering receptor expressed on myeloid cells-2-positive microglia in 24-month-old mice compared to 6- and 12-month-old mice. Using primary mouse microglial cells, galectin -3 was also increased by lipopolysaccharide treatment. These findings suggest that galectin-3 may play an important role in microglial activation and neuroinflammation during brain aging.
4.Microglial galectin-3 increases with aging in the mouse hippocampus
Hyun Joo SHIN ; So Jeong LEE ; Hyeong Seok AN ; Ha Nyeoung CHOI ; Eun Ae JEONG ; Jaewoong LEE ; Kyung Eun KIM ; Bong-Hoi CHOI ; Seung Pil YUN ; Dawon KANG ; Sang Soo KANG ; Gu Seob ROH
The Korean Journal of Physiology and Pharmacology 2025;29(2):215-225
Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood. In the present study, we investigated aging-related mechanisms and microglial galectin-3 expression in the mouse hippocampus using female 6-, 12-, and 24-month-old C57BL/6 mice. Western blot analysis revealed neurodegeneration, blood-brain barrier leakage, and increased levels of neuroinflammation-related proteins in 24-month-old mice compared to 6- and 12-month-old mice. Immunohistochemistry revealed an increase in activated microglia in the hippocampus of 24-month-old mice compared to 6- and 12-month-old mice. Furthermore, we found more galectin-3 and triggering receptor expressed on myeloid cells-2-positive microglia in 24-month-old mice compared to 6- and 12-month-old mice. Using primary mouse microglial cells, galectin -3 was also increased by lipopolysaccharide treatment. These findings suggest that galectin-3 may play an important role in microglial activation and neuroinflammation during brain aging.
5.Microglial galectin-3 increases with aging in the mouse hippocampus
Hyun Joo SHIN ; So Jeong LEE ; Hyeong Seok AN ; Ha Nyeoung CHOI ; Eun Ae JEONG ; Jaewoong LEE ; Kyung Eun KIM ; Bong-Hoi CHOI ; Seung Pil YUN ; Dawon KANG ; Sang Soo KANG ; Gu Seob ROH
The Korean Journal of Physiology and Pharmacology 2025;29(2):215-225
Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood. In the present study, we investigated aging-related mechanisms and microglial galectin-3 expression in the mouse hippocampus using female 6-, 12-, and 24-month-old C57BL/6 mice. Western blot analysis revealed neurodegeneration, blood-brain barrier leakage, and increased levels of neuroinflammation-related proteins in 24-month-old mice compared to 6- and 12-month-old mice. Immunohistochemistry revealed an increase in activated microglia in the hippocampus of 24-month-old mice compared to 6- and 12-month-old mice. Furthermore, we found more galectin-3 and triggering receptor expressed on myeloid cells-2-positive microglia in 24-month-old mice compared to 6- and 12-month-old mice. Using primary mouse microglial cells, galectin -3 was also increased by lipopolysaccharide treatment. These findings suggest that galectin-3 may play an important role in microglial activation and neuroinflammation during brain aging.
6.Efficacy and Safety of Lurasidone vs. Quetiapine XR in Acutely Psychotic Patients With Schizophrenia in Korea: A Randomized, Double-Blind, Active-Controlled Trial
Se Hyun KIM ; Do-Un JUNG ; Do Hoon KIM ; Jung Sik LEE ; Kyoung-Uk LEE ; Seunghee WON ; Bong Ju LEE ; Sung-Gon KIM ; Sungwon ROH ; Jong-Ik PARK ; Minah KIM ; Sung Won JUNG ; Hong Seok OH ; Han-yong JUNG ; Sang Hoon KIM ; Hyun Seung CHEE ; Jong-Woo PAIK ; Kyu Young LEE ; Soo In KIM ; Seung-Hwan LEE ; Eun-Jin CHEON ; Hye-Geum KIM ; Heon-Jeong LEE ; In Won CHUNG ; Joonho CHOI ; Min-Hyuk KIM ; Seong-Jin CHO ; HyunChul YOUN ; Jhin-Goo CHANG ; Hoo Rim SONG ; Euitae KIM ; Won-Hyoung KIM ; Chul Eung KIM ; Doo-Heum PARK ; Byung-Ook LEE ; Jungsun LEE ; Seung-Yup LEE ; Nuree KANG ; Hee Yeon JUNG
Psychiatry Investigation 2024;21(7):762-771
Objective:
This study was performed to evaluate the efficacy and safety of lurasidone (160 mg/day) compared to quetiapine XR (QXR; 600 mg/day) in the treatment of acutely psychotic patients with schizophrenia.
Methods:
Patients were randomly assigned to 6 weeks of double-blind treatment with lurasidone 160 mg/day (n=105) or QXR 600 mg/day (n=105). Primary efficacy measure was the change from baseline to week 6 in Positive and Negative Syndrome Scale (PANSS) total score and Clinical Global Impressions severity (CGI-S) score. Adverse events, body measurements, and laboratory parameters were assessed.
Results:
Lurasidone demonstrated non-inferiority to QXR on the PANSS total score. Adjusted mean±standard error change at week 6 on the PANSS total score was -26.42±2.02 and -27.33±2.01 in the lurasidone and QXR group, respectively. The mean difference score was -0.91 (95% confidence interval -6.35–4.53). The lurasidone group showed a greater reduction in PANSS total and negative subscale on week 1 and a greater reduction in end-point CGI-S score compared to the QXR group. Body weight, body mass index, and waist circumference in the lurasidone group were reduced, with significantly lower mean change compared to QXR. Endpoint changes in glucose, cholesterol, triglycerides, and low-density lipoprotein levels were also significantly lower. The most common adverse drug reactions with lurasidone were akathisia and nausea.
Conclusion
Lurasidone 160 mg/day was found to be non-inferior to QXR 600 mg/day in the treatment of schizophrenia with comparable efficacy and tolerability. Adverse effects of lurasidone were generally tolerable, and beneficial effects on metabolic parameters can be expected.
7.One-Year Results of Ear Reconstruction with 3D Printed Implants
Mijung KIM ; Yun Jung KIM ; Young Seok KIM ; Tai Suk ROH ; Eun-Ju LEE ; Jin-Hyung SHIM ; Eun Hye KANG ; Min Ji KIM ; In Sik YUN
Yonsei Medical Journal 2024;65(8):456-462
Purpose:
External ear reconstruction has been a challenging subject for plastic surgeons for decades. Popular methods using autologous costal cartilage or polyethylene still have their drawbacks. With the advance of three-dimensional (3D) printing technique, bioscaffold engineering using synthetic polymer draws attention as an alternative. This is a clinical trial of ear reconstruction using 3D printed scaffold, presented with clinical results after 1 year.
Materials and Methods:
From 2021 to 2022, five adult patients with unilateral microtia underwent two-staged total ear reconstruction using 3D printed implants. For each patient, a patient-specific 3D printed scaffold was designed and produced with polycaprolactone (PCL) based on computed tomography images, using fused deposition modeling. Computed tomography scan was obtained preoperatively, within 2 weeks following the surgery and after 1 year, to compare the volume of the normal side and the reconstructed ear. At 1-year visit, clinical photo was taken for scoring by two surgeons and patients themselves.
Results:
All five patients had completely healed reconstructed ear at 1-year follow-up. On average, the volume of reconstructed ear was 161.54% of that of the normal side ear. In a range of 0 to 10, objective assessors gave scores 3 to 6, whereas patients gave scores 8 to 10.
Conclusion
External ear reconstruction using 3D printed PCL implant showed durable, safe results reflected by excellent volume restoration and patient satisfaction at 1 year postoperatively. Further clinical follow-up with more cases and refinement of scaffold with advancing bioprinting technique is anticipated. The study’s plan and results have been registered with the Clinical Research Information Service (CRIS No. 3-2019-0306) and the Ministry of Food and Drug Safety (MFDS No.1182).
8.Fabrication of 3D-Printed Implant for Two-Stage Ear Reconstruction Surgery and Its Clinical Application
Oh Young JOO ; Tae Ho KIM ; Young Seok KIM ; Tai Suk ROH ; Eun-Ju LEE ; Jin-Hyung SHIM ; Hyun Woo CHO ; In Sik YUN
Yonsei Medical Journal 2023;64(4):291-296
Purpose:
Ear reconstruction is one of the most difficult areas in the field of reconstructive surgery. Due to limitations of the current practice, a novel method of auricular reconstruction is needed. Major advancements in three-dimensional (3D) printing technique have rendered the process of ear reconstruction more favorable. Herein, we present our experience in designing and clinically using 3D implants in both 1st and 2nd stage ear reconstruction surgery.
Materials and Methods:
After obtaining 3D CT data from each patient, a 3D geometric ear model was created using mirroring and segmentation processes. The 3D-printed implant design resembles but does not exactly match the normal ear shape, and can be inserted in harmony with the currently used surgical technique. The 2nd stage implant was designed to minimize dead space and support the posterior ear helix. The 3D implants were finally fabricated with a 3D printing system and used in ear reconstruction surgery in our institute.
Results:
The 3D implants were manufactured for application to the currently used two-stage technique while maintaining the shape of the patient’s normal ear. The implants were successfully used for ear reconstruction surgery in microtia patients. A few months later, the 2nd stage implant was used in the 2nd stage operation.
Conclusion
The authors were able to design, fabricate, and apply patient-specific 3D-printed ear implants for 1st and 2nd stage ear reconstruction surgeries. This design, combined with 3D bioprinting technique, may be a future alternative for ear reconstruction.
9.Analysis of Risk Factors to Predict Occurrence and Prognosis of Postsurgical Hypertrophic Scar Development: A Review of 4238 Cases
Mi Yeon CHO ; Sang Gyun LEE ; Jee Eun KIM ; Yong Sang LEE ; Hang-Seok CHANG ; Mi Ryung ROH
Yonsei Medical Journal 2023;64(11):687-691
Purpose:
This study aimed to identify the risk factors associated with the occurrence and prognosis of hypertrophic scarring following thyroidectomy.
Materials and Methods:
A total of 4238 patients who underwent thyroidectomy were included in this study. A multivariable logistic regression model was developed to identify the risk factors for hypertrophic scar development and its prognosis.
Results:
Our analysis revealed that hypertrophic scar development was associated with younger age [odds ratio (OR)=0.949, p<0.0001], male sex (OR=0.562, p<0.0001), higher body mass index (OR=1.137, p<0.0001), prominent sternocleidomastoid muscles (OR=2.522, p<0.0001), scarring located within 1 cm of the sternal notch (OR=4.345, p<0.0001), and a history of keloid development (OR=2.789, p=0.0031). Additionally, scar location within 1 cm of the sternal notch (beta=4.326, p=0.0429) and a history of keloid development (beta=23.082, p<0.0001) were found to be associated with the prognosis of hypertrophic scarring.
Conclusion
The findings of this study provide valuable insights into the risk factors associated with hypertrophic scarring following thyroidectomy. Clinicians can use this information to predict the occurrence of hypertrophic scarring and its prognosis, and take preventative measures accordingly.
10.Strong SARS-CoV-2 Antibody Response After Booster Dose of BNT162b2 mRNA Vaccines in Uninfected Healthcare Workers
Seok Ryun KWON ; Seok Ryun KWON ; Namhee KIM ; Hyunwoong PARK ; Dohsik MINN ; Seungman PARK ; Eun Youn ROH ; Jong Hyun YOON ; Sue SHIN
Journal of Korean Medical Science 2022;37(19):e135-
Despite strict guidelines for coronavirus disease 2019 (COVID-19), South Korea is facing its fourth pandemic wave. In this study, by using an automated electrochemiluminescence immunoassay assay, we tracked anti-spike protein receptor-binding domain (anti-S-RBD) antibody titer from the second dose to 2 weeks after the booster dose vaccination. After the second dose, 234 participants had their anti-S-RBD antibody titers decrease over time. We also showed the booster dose (the third dose) increased antibody titer by average 14 (min–max, 2–255)-fold higher compared to the second dose among the 211-booster group participants, therefore, the booster dose could be recommended for low responders to the second dose. Our findings showed a distinct humoral response after booster doses of BNT162b2 mRNA vaccines and may provide further evidence of booster vaccination efficacy. These data will also be helpful in vaccination policy decisions that determine the need for the booster dose.

Result Analysis
Print
Save
E-mail